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1. [Choices, Choices! – 20 points].

MC1 (2.5pts)

A post-order traversal of the following tree visits the nodes in which order?

C

G

H

K

LI

J

FD

EB

A

(a) G C B A E D F H K I J L

(b) A B C D E F G H I J K L

(c) A B D F E C J I L K H G

(d) All of these are valid post-order traversals.

(e) None of these is a valid post-order traversal.

MC2 (2.5pts)

The buildTree() function in MP5 took two arguments, a BMP object source and an integer
resolution, and built a quadtree to represent the image. Which of the following function
declarations uses const appropriately in this context?

(a) void Quadtree::buildTree(BMP const & source, int resolution);

(b) void Quadtree::buildTree(BMP & source, int resolution) const;

(c) void Quadtree::buildTree(BMP & const source, int resolution);

(d) none of the above



MC3 (2.5pts)

Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to
search for the number 363. Which of the following sequences can not be the sequence of nodes
visited in the search?

(a) 2, 252, 401, 398, 330, 344, 397, 363

(b) 924, 220, 911, 244, 898, 258, 362, 363

(c) 2, 399, 387, 219, 266, 382, 381, 278, 363

(d) 925, 202, 911, 240, 912, 245, 363

(e) 935, 278, 347, 621, 399, 392, 358, 363

MC4 (2.5pts)

Which of the following is the strongest valid statement made about AVL trees?

(a) They are minimal height trees

(b) They are height-balanced trees

(c) They are minimal height and height-balanced trees

(d) They are full, minimal height, and height-balanced trees

(e) None of the above are valid statements

MC5 (2.5pts)

Suppose an order m B-tree contains n items. In the worst-case, how many CPU operations
would be required to search the tree for a specific key?

(a) O(log2 n)

(b) O(logm n)

(c) O(m log2 n)

(d) O(m log2 m)

(e) O(m logm n)



MC6 (2.5pts)

In an array-based implementation of a Heap, the right-child of the right-child of the node at
index i, if it exists, can be found at what array location?

(a) 4i + 3

(b) 2i + 1

(c) 4i + 1

(d) 2i + 2

(e) 4i + 2

MC7 (2.5pts)

Which of these is a Huffman Code for the character frequencies: ‘a’ = 5, ‘b’ = 3, ‘c’ = 4, ‘d’
= 10?

(a) ‘a’ is 10, ‘b’ is 110, ‘c’ is 111, and ‘d’ is 0.

(b) ‘a’ is 10, ‘b’ is 01, ‘c’ is 00, and ‘d’ is 11.

(c) ‘a’ is 1, ‘b’ is 01, ‘c’ is 00, and ‘d’ is 0.

(d) ‘a’ is 111, ‘b’ is 0, ‘c’ is 10, and ‘d’ is 110.

(e) None of these.

MC8 (2.5pts)

For which of the following data structures does the Find function require no worse than
O(log n) running time?

(a) Binary Search Tree (worst case analysis)

(b) Heap (worst case analysis)

(c) Hashing (under simple uniform hashing assumption, and with an ideal hash function)

(d) Two or more of the structures in (a) through (d) require no worse than O(log n) running
time.

(e) Find does not run in time O(log n) for any of these structures.

The correct answer for this problem is (c), since, under the described conditions, hashing
provides O(1)-time find. BUT, we did not emphasize the fact that if a function f(n) is
O(g(n)), and g(n) is O(h(n)), then f(n) is O(h(n)), so we also counted (e) as a correct
response.



2. [QuadTrees – 20 points].

For this question, you will be writing a private member function called blockyBlur whose
purpose is to add very basic “blur” functionality to the MP5 Quadtree class. It should be
implemented using the following rules:

(a) Block

i. If the quadtree is null or just a single node, don’t do anything.
ii. If a node is a parent of 4 leaves in the original tree, remove the leaves from the tree

(do not do this recursively). This creates a blocky effect, where every group of four
pixels is now represented by one pixel.

(b) Blur

i. If a node has no parent or if it has had no children removed, don’t change the value
of its element (Hint: your code will be simplified if you observe that the average of
a number and itself is just that number).

ii. If a node has had its children removed and if it has a parent, make its element
the average of its own element and its parent’s. Recall that in our quadtrees, the
element is an RGBApixel.

You may assume that the quadtree is complete and that it has been built from an image that
has size 2k × 2k. You need not assume anything in particular about the value of the element
in any node, except that it contains some valid pixel (presumably assigned when the tree was
built). Finally, you MAY write private Quadtree helper functions to solve this problem, but
you are not required to do so.

We have provided the public member function blurTree which calls blockyBlur on the root
node of the quadtree, and another function avg which computes the average of two RGBApixel
objects (you are welcome to use this function).

// public interface for blurring a Quadtree
void Quadtree::blurTree(void)
{

// note that in this function call, we’re using root->element as the value
// of the parentPixel of the root because we want the element of a single
// node quadtree to remain unchanged. That is, if the root HAD a parent,
// it’s element would have the same value as root->element.

blockyBlur(root, root->element);
}

// returns an RGBApixel representing the average of two RGBApixels
RGBApixel avg(RGBApixel p1, RGBApixel p2);

Write your code for blockyBlur and any helper functions on the next page(s).



// performs a basic blur on the tree, starting at the parameter node
void Quadtree::blockyBlur(QuadtreeNode* current, RGBApixel parentPixel)
{

Ideal Solution:

// performs a basic blur on the tree, starting at the parameter node

void Quadtree::blockyBlur(QuadtreeNode* current, RGBApixel parentPixel) {
setAvg(current);
combined(current, parentPixel);

}

void Quadtree::setAvg(QuadtreeNode* current) {
if(current->neChild == NULL) {

return;
}
setAvg(current->neChild); // recurse on all four children
setAvg(current->nwChild);
setAvg(current->swChild);
setAvg(current->seChild);
// set the current nodes element to avg of its children
current->element.Red = (current->nwChild->element.Red

+ current->neChild->element.Red + current->seChild->element.Red
+ current->swChild->element.Red) / 4;

current->element.Green = (current->nwChild->element.Green
+ current->neChild->element.Green + current->seChild->element.Green
+ current->swChild->element.Green) / 4;

current->element.Blue = (current->nwChild->element.Blue
+ current->neChild->element.Blue + current->seChild->element.Blue
+ current->swChild->element.Blue) / 4;

}

void Quadtree::combined(QuadtreeNode* current, RGBApixel parentPixel) {
if(current->neChild == NULL) { // handle single node tree

return;
}
// you must have four children at this point
if(current->neChild->neChild == NULL) { // current is parent of four leaves

removeLeaf(current->neChild);
removeLeaf(current->nwChild);
removeLeaf(current->seChild);
removeLeaf(current->swChild);
// since children have been removed at this point and if current
// doesnt have a parent, its pixel wont be changed



current->element = avg(current->element, parentPixel);
}
else {

combined(current->neChild, current->element); // recurse on all four children
combined(current->nwChild, current->element);
combined(current->swChild, current->element);
combined(current->seChild, current->element);

}
}

void Quadtree::removeLeaf(QuadtreeNode*& current) {
delete current;
current = NULL;

}

Grading Rubric:

Setting element in non-leaf nodes to average of children (1 point)
Handling tree with single node (1 point)
Recursion (4 points)

• Correct base case (2 points)

• Correct recursive calls (2 points)

Block Functionality (4 points)

• Correctly checking if node is a parent of four leaves (2 points)

• Proper memory management (2 points)

– Correctly deallocating dynamic nodes (1 point)
– Setting deallocated pointers to NULL (1 point)

Blur Functionality (4 points)

• Correctly checking if node had its children removed and if it has a parent or using the
hint to simplify this check(2 point)

• Correctly setting element to the correctly computed average (2 point)

Comments (6points)

• 1 point for commenting about when to recurse

• 1 point for commenting about the base cases

• 2 points for commenting about how and when to block

• 2 points for commenting about how and when to blur



3. [Analysis – 20 points].

(a) Suppose we have a min-Heap A and a max-Heap Z, each of which store integers. Assume
also that all the keys in A are less than all the keys in Z, and A and Z have the same
number of keys. (Note: a max-Heap is just a Heap where all paths from root to leaf are
decreasing.) Finally, assume that we have a Binary Search Tree class called BST with all
the usual member functions.
Consider this function play:

BST play(minHeap A, maxHeap Z){

BST B;
while (!A.isEmpty && !Z.isEmpty) {

B.insert(Z.removeMax());
B.insert(A.removeMin());

}
return B;

}

i. Circle the illustration that best describes the BST returned by play.

…

…

…

… …

we have:
A: min-Heap
Z: max-Heap
B: BST
two rules of the play:
1) all the keys in A are less than all the keys in Z
2) A and Z have the same number of keys (let it be n)

We start building BST B by removing the max (let call b1) from Z, and adding
it to B as it’s root. (note that each removing from maxHeap or minHeap needs
heapifying to preserve the max or min heap structure). The next node that we will
insert into the BST is the minumum of the minHeap, let call it b2. As it mentioned
in the rules all the keys of minHeap are less than all the keys in maxHeap, so b2 is
less than b1, and it will be the left child b1. Suppose that there are still some nodes
remain in min and maxHeap. In the next iteration of while again we remove the



max from the maxHeap, b3. This would be less than b1, because it is second max of
maxHeap, (remember when we removeMax nodes from maxHeap one by one, they
are sorted in decreseaing order). so we must add it somewhere in left child of b1.
But regarding the rule of play b3¿b2, so we must add it as the right child of b2.

ii. Analyze the total running time of play if each Heap contains n data items.

Solution:
For simplifying the runtime analysis we can write the code as following:
BST play(minHeap A, maxHeap Z) {

BST B;
while(!A.isEmpty() && !Z.isEmpty()) {

N=Z.removeMax();
B.insert(N);
N=Z.removeMin();
B.insert(N);

}
return B;

}

It is obvious that the while loop goes through all n nodes of minHeap and maxHeap.
As it is shown all the operations inside the loop are done sequentially, so we need
to find the maximum order of the operations inside the loop and just multiply the
maximum order by n for finding the total running time. removeMax and removeMin
from heap each takes O(log(n)). Insert into BST takes O(n) in the worst case.
Therefore the maximum order of operations inside the loop is O(n). By multiplying
n ∗O(n) the order is O(n2).



(b) Suppose we have a min-Heap A and a max-Heap Z, each of which store integers. Assume
also that all the keys in A are greater than all the keys in Z, and A and Z have the same
number of keys. (Note: a max-Heap is just a Heap where all paths from root to leaf are
decreasing.) Finally, assume that we have an AVL Tree class called AVLTree with all the
usual member functions.
Consider this function work:

AVLTree work(minHeap A, maxHeap Z){

AVLTree B;
while (!A.isEmpty && !Z.isEmpty) {

B.insert(Z.removeMax());
B.insert(A.removeMin());

}
return B;

}

i. Circle the illustration that best describes the AVL Tree returned by work.

…

…

…

… …

we have:
A: min-Heap
Z: max-Heap
B: AVL tree
two rules of the play:
1) all the keys in A are greater than all the keys in Z
2) A and Z have the same number of keys (let it be n)

We start building AVLTree B by removing the max (let call b1) from Z, and adding
it to B as it’s root. (note that each removing from maxHeap or minHeap needs
heapifying to preserve the max or min heap structure). The next node that we will
insert into the BST is the minumum of the minHeap, let call it b2. As it mentioned
in the rules all the keys of minHeap are greater than all the keys in maxHeap. We
just need to remember that after each insertion into AVLTree we need to re-balance
it, so the final tree is balanced.



ii. Analyze the total running time of work if each Heap contains n data items.

Solution:
For simplifying the runtime analysis we can write the code as following:
AVLTree work(minHeap A, maxHeap Z) {

AVLTree B;
while(!A.isEmpty() && !Z.isEmpty()) {

N=Z.removeMax();
B.insert(N);
N=Z.removeMin();
B.insert(N);

}
return B;

}

like previous section, It is obvious that the while loop goes through all n nodes of
minHeap and maxHeap. As it is shown all the operations inside the loop are done
sequentially, so we need to find the maximum order of the operations inside the
loop and just multiply the maximum order by n for finding the total running time.
removeMax and removeMin from heap each takes O(log(n)). Insert into AVLTree
takes O(log(n)). Therefore the maximum order of operations inside the loop is
O(log(n)). By multiplying n ∗O(log(n)) the order is O(n log(n)).

My Rubric for grading this question:
There are four parts that each has 5 points. So highlighting the correct structure of
the tree in the first parts of a and b gets 5 points for each, all or nothing.
In the analysis part:
• 1.5 points if you detect the loop.
• 1.5 points if you detect the correct order of operations inside the loop (O(n) for

part a-ii & O(log(n)) for part b-ii ).
• 1 point if you multiply n by whatever you got from the previous step
• 1 point if the final answer is correct

Also, minus 1 point for wrong statements.



4. [All about AVL trees – 20 points].

(a) Recall that AVL Trees perform rotations to maintain height balance. Draw a picture of
a 7 node binary search tree that would be an AVL tree after a right-left double rotate,
and show that it becomes an AVL tree after those rotations. In your illustrations, be
sure to include a valid key in each node, and an indication of which node was originally
out of balance.

Figure 1: right-left rotation

Sol. 4(a). Figure 1 gives one possible solution. Many other solutions are also possible.
Grading scheme: total 5 points
Correct example of tree = 2 points
Valid keys in tree = .5 point
Writing balance to indicate which node was out of balance = .5 point
First correct rotation = 1 point
Second correct rotation = 1 point

(b) In this part of the problem you will implement the rotateLeft member function for the
AVLTree class. Here is the partial AVLTree class definition:

class AVLTree {



public:
...

private:
class AVLTreeNode {
public:

...
int element;
int height;
AVLTreeNode* left;
AVLTreeNode* right;

};
int max(int a, int b) const;
int height(AVLTreeNode const * x) const;
...
// function declarations for rotations go here.
// We’re not telling you what they look like.

};

The function height takes an AVLTreeNode pointer argument and returns the integer
height of the subtree rooted at the parameter node. The function max takes two integer
arguments and returns an integer that is the larger of the two parameters. Each of the
rotation functions takes a reference to an AVLTreeNode pointer, performs its rotation,
and returns nothing.

Using this information, implement the rotateLeft member function here:

Sol. 4(b). Figure 2 gives the diagram for left rotation. One solution is given below
(other solutions are also possible):

void AVLTree::rotateLeft(AVLTreeNode * & node) {

// no need to check for conditions, as they are supposed
// to be checked before calling this function
AVLTreeNode* y = node;
node = node->right;
y->right = node->left;
node->left = y;
y->height = height(y);

}

Grading scheme: total 5 points
Considering possible presence of T2 (see the figure) = 1 point
Correct rotation process = 3 points
Updating height = 1 point



Figure 2: left rotation

(c) Prove by induction that the number of null pointers in an n node AVL tree is n + 1.

Let T be an arbitrary AVL tree with n nodes. Assume (Inductive Hypothesis) that any
AVL tree with j < n nodes has j + 1 null pointers.

Base Case (n = 0): Suppose T is a tree with zero nodes (an empty tree). Then, since
we represent T using one null pointer, the number of null pointers is one more than the
number of nodes.

Inductive Case (n > 0): By definition of AVL trees, T ’s left and right children, TL and
TR, are AVL trees. Denote by a and b the number of nodes in TL and TR respectively.
Since a < n and b < n we can apply the inductive hypothesis to TL and TR, and thus TL

has a + 1 null pointers and TR has b + 1 null pointers. The total number of null pointers
in T is (a+1)+(b+1), and this is n+1 since the total number of nodes is n = a+ b+1.

Grading Rubric:

Almost no one approached this the correct way, so I gave full credit for some incorrect



responses (what was I thinking!!??). The common error was to remove a single node
from a tree of size n+ 1, apply the inductive hypothesis to the resulting tree, and adjust
the pointer count by adding back in the removed node. The problem is that you cannot
apply the inductive hypothesis to the tree in this case, because you can’t be sure that
it’s an AVL tree.

• 1 point for base case
• 2 points for stating inductive hypothesis
• 2 points for the inductive argument

(d) Suppose your study partner suggests that the two of you should implement an AVL tree
using an array, much like we use an array to implement a Heap. First, explain why your
partner thinks this might be a good idea. Second, give your argument that it really isn’t
such a good idea after all. In your dialogue, you should address basic functionality (find,
insert, remove) and rotations. You may also wish to discuss space usage and running
times. The graders will be delighted if you illustrate your arguments using small example
trees.

Partner: Though an n node AVL tree isn’t complete, it has height which is O(log n),
which isn’t so bad. If we store the elements in an array like we do for heaps (or any
other complete tree) we probably won’t be wasting too much space. (An analysis that
I didn’t expect shows that the space required is no more than n2 for an n node AVL
tree.) The simplicity of the parent and child relationships makes this really attractive!

You: Nah. While find would work in O(log n) time, insert and remove would be disas-
trous because of the rearrangement that occurs with rotations. It’s possible that every
single element of the array would need to be moved to a different spot upon a rotation,
even if the relative positions of nodes in subtrees didn’t change. This is not a problem
in a pointer based AVL tree.

Grading rubric:

Maximum of 2 points if there was no explanation of how an AVL tree would be stored in
a manner similar to a Heap. To detect what you were imagining, I looked for pictures,
or for mention of the indices of children (2i and 2i +1), or for mention that there may
be gaps in the array if the tree is not complete.

An argument similar to the correct one but with no mention of rotations received 3
points.

Beyond that, i basically just gave a point for each correct observation, and subtracted a
point for ea ch incorrect observation.



5. [Make Hash of It – 20 points].

Suppose you are given a table T of size 11 and a set S = {5, 40, 18, 22, 16, 30, 27} to hash
into the table, using the hash function h(k) = k%11.

(a) Show T after the values from S are entered into it, using separate chaining.
Solution:

(b) Show T after the values from S are entered into it, using linear probing with the function
h(k,i) = (h(k)+2i)%11.
Solution:

(c) For this particular T and S, which is the better choice, and why? Your answer should
discuss the number of probes necessary to Find a particular key.
Solution:

Separate chaining is the better choice for this set S. The longest list in the separate
chaining case contains 3 elements to search through, while linear probing requires as
many as 6 probes to insert or find elements.



(d) Give an example of a set S with 7 elements for which the other method is the better
choice.

Solution:

A good set for linear probing is one that has no collisions, e.g., {1, 2, 3, 4, 5, 6, 7}. In this
case, the extra space required for the lists of separate chaining is a waste of memory, as a
find is equally fast for either method.

Rubric:

(a) 7 pts
-1 pt if array is not used to hold header nodes
-1 pt if elements are not inserted at the head of the list
-1 pt each for arithmetic errors in placing elements
-3 pts if no lists were used
-2 pts if collisions were resolved using h(k, i) = (h(k) + i)%11

(b) 7 pts
-1 pt each for arithmetic errors in placing elements
-4 pts if consistently misusing h(k, i) = (h(k) + 2i)%11 with respect to i
-3 pts if h(k, i) = (h(k) + i)%11 was used correctly

(c) 4 pts
2 pts for a correct answer
2 pts for a correct reason
-3 pts if answer was wrong because (a) or (b) was done incorrectly

(d) 2 pts
-1 pt for right set, wrong reason
-1 pt if correct relative to (c) (and (c) was wrong) and a reason was given


