
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Fall 2009
7p-9p, Tuesday, November 3

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 5 problems total on 18 pages. The last two sheets are scratch paper; you
may detach them while taking the exam, but must turn them in with the exam when you
leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

• We will be grading your code by first reading your comments to see if your plan is good,
and then reading the code to make sure it does exactly what the comments promise. In
general, complete and accurate comments will be worth approximately 30% of the points on
any coding problem.

• Please put your name at the top of each page.

Problem Points Score Grader

1 16

2 20

3 20

4 14

5 10

6 10

7 10

Total 100

1. [Miscellaneous – 16 points].

MC1 (2pts)

Suppose that a client performs an intermixed sequence of stack push and pop operations. The
push operations push the integers 0 through 9 in order on to the stack; the pop operations
print out the return value. Which of the following sequences could not occur?

(a) 4 3 2 1 0 9 8 7 6 5

(b) 2 1 4 3 6 5 8 7 9 0

(c) 0 4 6 5 3 8 1 7 2 9

(d) 4 6 8 7 5 3 2 9 1 0

(e) All of these sequences are possible.

MC2 (2pts)

A queue cannot be implemented using only for holding data.

(a) a stack

(b) a linked list

(c) an array

(d) More than one of a), b), c) can be used to fill in the blank.

(e) None of a), b), c) can be used to fill in the blank.

MC3 (2pts)

Suppose we have implemented the Stack ADT as a singly-linked-list with head and tail
pointers and no sentinels. Which of the following best describe the running times for the
functions push and pop, assuming there are O(n) items in the list, and that the bottom of
the stack is at the head of the list (all pushing and popping occurs at the tail)?

(a) O(1) for both functions.

(b) O(n) for both functions.

(c) O(1) for push and O(n) for pop.

(d) O(n) for push and O(1) for pop.

(e) None of these is the correct choice.

MC4 (2pts)

Consider the following partial C++ code:

#include <iostream>
#include <list>
using namespace std;

template< class Iter, class Formatter>
bool mystery(Iter first, Iter second, Formatter runit) {

Iter temp = first;
bool p = true;
while (!(second == temp)) {

p = (p && runit(*first, *second));
first++;
second--;

}
return p;

}

class noClue {
public:

bool operator()(int a, int b) {
return (a==b);

}
};

int main() {

list<int> s;

... // list insertions here

list<int>::iterator it1 = s.begin();
list<int>::iterator it2 = s.end();
it2--;

noClue nc;
if (mystery<list<int>::iterator, noClue>(it1, it2, nc))

cout << "yes" << endl;
else

cout << "no" << endl;

return 0;
}

Which of the following statements is true?

(a) This code does not compile because of a type mismatch in the mystery parameter list.

(b) This code does not compile because of a syntax error in the template instantiation for
mystery.

(c) If the list consists of the integers 1, 2, 3, 2, 1 in that order, with the first item on the
left, then the output is “yes”.

(d) If the list consists of the integers 1, 2, 3, 2, 1, 4 in that order, with the first item on the
left, then the output is “yes”.

(e) None of these options describes the behavior of this code.

MC5 (2pts)

Which of the following statements is true for a B-tree of order m containing n items?

(i) The height of the B-tree is O(logm n) and this bounds the total number of disk seeks.

(ii) A node contains a maximum of m − 1 keys, and this bounds the number of disk seeks
at each level of the tree.

(iii) Every Binary Search Tree is also an order 2 B-Tree.

Make one of the following choices.

(a) Only item (i) is true.

(b) Only item (ii) is true.

(c) Only item (iii) is true.

(d) Two of the above choices are true.

(e) None of choices (i), (ii), or (iii) are true.

MC6 (2pts)

To justify the use of arrays for data structures of unbounded size (stacks, queues, lists, etc.),
we proved that the following strategy results in O(n) running time over a sequence of n inserts
for an average of O(1) per insertion.

(a) When an array of size n fills, create a new array of size n, and maintain all the arrays.
Do not copy any data.

(b) When an array of size n fills, create a new array of size 2n, and maintain all the arrays.
Do not copy any data.

(c) When an array of size n fills, create a new array of size n+d for some large fixed constant
d, and copy the data into the new array.

(d) When an array of size n fills, create a new array of size 2n and copy the data into the
new array.

(e) None of these strategies give the performance we describe.

MC7 (2pts)

Objects of type iterator promise to implement each of the following except. . .

(a) operator+

(b) operator*

(c) operator==

(d) operator=

(e) All of these are implemented in an iterator.

MC 8 (2)

In an array-based implementation of a stack we achieve efficient push and pop operations by
.

(i) placing the top of the stack at the start of the array.

(ii) placing the bottom of the stack at the start of the array.

Make one of the following choices.

(a) Only item (i) can be used to fill in the blank.

(b) Only item (ii) can be used to fill in the blank.

(c) Either item (i) or item (ii) can be used to fill in the blank.

(d) Neither item (i) or item (ii) can be used to fill in the blank.

2. [Efficiency – 20 points].

Each item below is a description of a data structure, its implementation, and an operation
on the structure. In each case, choose the appropriate running time from the list below. The
variable n represents the number of items (keys, data, or key/data pairs) in the structure.
In answering this question you should assume the best possible implementation given the
constraints, and also assume that every array is sufficiently large to handle all items. Please
use the scantron sheets for your answers.

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n log n)

(e) None of these running times is appropriate.

(MC 9) Enqueue for a Queue implemented with an array.

(MC 10) Dequeue for a Queue implemented with an array.

(MC 11) Worst case for insertion into a Binary Search Tree.

(MC 12) Worst case for removal from a Binary Search Tree.

(MC 13) Worst case for an algorithm to return all keys that are greater
than 20 and that are multiples of 3 in a Binary Search Tree.

(MC 14) Worst case for insertion into an AVL Tree.

(MC 15) Worst case for an algorithm to return all keys that are
greater than 20 and that are multiples of 3 in an AVL Tree.

(MC 16) Level order traversal of an AVL Tree.

(MC 17) Build an AVL tree with keys that are the numbers between
0 and n, in that order, by repeated insertion into the tree.

(MC 18) Build a binary search tree with keys that are the numbers between
0 and n, in that order, by repeated insertion into the tree.

3. [Quadtrees – 20 points].

For this question, consider the following partial class definition for the Quadtree class, which
uses a quadtree to represent a square bitmap image as in MP5.

class Quadtree
{
public:

// constructors and destructor; all of the public methods from MP5, including:

void buildTree(BMP const & source, int resolution);
RGBApixel getPixel(int x, int y) const;
BMP decompress() const;
void clockwiseRotate(); // 90 degree turn to the right
void prune(int tolerance);
int pruneSize(int tolerance) const;
int idealPrune(int numLeaves) const;

private:
class QuadtreeNode
{

QuadtreeNode* nwChild; // pointer to northwest child
QuadtreeNode* neChild; // pointer to northeast child
QuadtreeNode* swChild; // pointer to southwest child
QuadtreeNode* seChild; // pointer to southeast child

RGBApixel element; // the pixel stored as this node’s "data"
};

QuadtreeNode* root; // pointer to root of quadtree, NULL if tree is empty.
};

You may assume that the quadtree is complete and that it has been built from an image
that has size 2k × 2k. As in MP5, the element field of each leaf of the quadtree stores the
color of a square block of the underlying bitmap image; for this question, you may assume,
if you like, that each non-leaf node contains the component-wise average of the colors of its
children. You may not use any methods or member data of the Quadtree or QuadtreeNode
classes which are not explicitly listed in the partial class declaration above. You may assume
that each child pointer in each leaf of the Quadtree is NULL.

(a) (3 points) Write a public member function void Quadtree::flipVert(), which reflects
an image across the horizontal axis running across the center of the image. For example,
if the image is a portrait of a person standing upright, the result will be the image of the
person upside down. Your function should call ONE private helper function that you will
be writing in the next part of the problem. Your implementation must work correctly
for Quadtrees which have been pruned as described in MP5. Write the function as it
would appear in the quadtree.cpp file for the Quadtree class.

void Quadtree::flipVert(){
// Your code goes here

}

(b) (7 points) Write the private helper method you invoked in the previous part. For this
one, you may choose the return value and the number and types of parameters. Note
that our skeleton below should have sufficiently many lines for your solution, but you
are welcome to add more if you need to do so. Please try to comment your code inline
and to the right of the skeleton.

_________ ____________::____________(____________________) {

}

(c) (5 points) Now consider the transformation on a bitmap image which moves the pixel
at coordinates (i, j) to coordinates (j, i) for each pixel in the image. We call this trans-
formation a “transposition”. Under a transposition, the first row of an image becomes
the first column, the second row becomes the second column, and so forth. Your task
is to add a public method void Quadtree::transpose() to the Quadtree class, which
performs a transposition on the underlying bitmap image.

You you should solve this problem by calling existing public Quadtree member functions,
including the one you wrote in part (a). Your implementation must work correctly for
Quadtrees which have been pruned as described in MP5. Write the method as it would
appear in the quadtree.cpp file for the Quadtree class.

(Hint: it may help to think of a transposition as a reflection across the diagonal running
from the top-left corner to the bottom-right corner of the bitmap. BIG hint: there is an
elegant solution with no more than 3 lines of code.)

void Quadtree::transpose(){
// Your code goes here

}

(d) (5 points) Analyze and give a tight asymptotic bound on the running time of your
implementation for part (c). Your bound should be stated in terms of N , the number of
nodes in the Quadtree. Briefly justify your answer.

4. [Binary Search Trees – 14 points].

(a) (9 points) Scrutinize the following code and figure out what the function mystery does
when called on a node in a binary search tree. You may assume that both croot and
croot->left are non-NULL, and that the keys in the BST are unique.

treeNode * & BST<T>::mystery(treeNode * & cRoot) {
return intrigue(cRoot->left);

}

treeNode * & BST<T>::intrigue(treeNode * & cRoot) {
if (cRoot->right == NULL) return cRoot;
else return intrigue(cRoot->right);

}

Circle every accurate statement in the list below.

• mystery returns the node with minimum key in the tree rooted at croot.
• mystery returns the node with maximum key in the tree rooted at croot.
• mystery returns the node with maximum key less than croot->key in the tree

rooted at croot.
• mystery returns the node with minimum key greater than croot->key in the tree

rooted at croot.
• mystery does an inOrder traversal of the subtree rooted at croot.
• mystery does a postOrder traversal of the subtree rooted at croot->left.
• in the worst case mystery runs in time proportional to the height of the tree, O(h).
• in the worst case mystery runs in time O(log n) where n is the number of nodes in

the tree.
• in the worst case mystery runs in time O(n) where n is the number of nodes in the

tree.

(b) (3 points) Which binary search tree public member function employs this code?

(c) (2 points) Briefly explain the context in which the code is used.

5. [AVL Trees – 10 points].

This tree will become unbalanced by the removal of some of the nodes. Fill in the table
below, telling, for each node, whether its removal will unbalance the tree, at what node the
first imbalance occurs, what kind of rotation would fix that imbalance, and whether or not a
repair of the first imbalance invokes additional imbalance(s). Note that each node is removed
from the original tree. (If removal of a node does not unbalance the tree, just leave its entry
blank.)

!"

#"

$"

%"

&" '("

')"

*"

'" ''"+"

("

Additional
Node to Unbalanced Imbalance?
Remove Node Rotation to Fix (Yes or No)

1
2
3
4
5
6
7
8
9
10
11
12

6. [A simple proof – 10 points].
A perfect binary tree of height h is defined recursively as follows:

• an empty tree is a perfect binary tree of height −1.
• a non-empty tree consisting of a root r, and left and right subtrees TL and TR, is a

perfect binary tree of height h if and only if TL and TR are perfect binary trees of
height h− 1.

(a) (2 points) Draw the perfect binary trees of height 0, 1, 2, and 3 on the lines below.

(b) (3 points) Give an expression for the total number of nodes in a perfect binary tree of
height h:

(c) (5 points) Prove that your answer to part (b) is correct by induction:
Consider an arbitrary perfect binary tree of height h.

• If h = −1 then the expression in part (b) gives: which is the number of
nodes in a tree of height -1.

• otherwise, if h > −1 then we denote our tree by a root r together with subtrees TL

and TR. By an inductive hypothesis that says:

we have nodes in TL and nodes in TR

for a total of nodes, which was what we wanted to
prove.

7. [B-Trees – 10 points].

(a) (3 points) What is the maximum number of keys we can store in a B-Tree of order 128
that has height 3?

(b) (3 points) What is the minimum number of keys we can store in a B-Tree of order 128
that has height 3?

(c) (4 points) In class we proved that the search time for finding a key in a B-Tree is
O(m logm n). In this problem, we’d like you to explain each of the factors m, and logm n
in that result:

i. Tell as much as you can about the factor m:

ii. Tell as much as you can about the factor logm n:

scratch paper

