
University of Illinois at Urbana-Champaign
Department of Computer Science

Final Examination
CS 225 Data Structures and Software Principles

Sample Exam 1
3 hours permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• You should have 12 sheets total (the cover sheet, plus numbered pages 1-22). The last sheet
is scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. The back of the page before the scratch paper contains the interface to the
Array and pair classes, which you might find useful.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 16

2 40

3 64

4 15

5 15

6 15

7 15

Total 180

CS 225 Final Exam—Sample Exam 1 1 Name:

1. [C++ – 16 points].

(a) You have a hash table class declared as follows:

class HashTable {
private:

Array<pair<int, int> > table;
public:

// public function declarations
};

The Array will be indexed from 0 through table.Size() - 1. The first value in each
pair holds 0 if the cell is empty, 1 if the cell is valid, and -1 if the cell was deleted.
The second value in each pair holds the key value in this cell (if the cell is a valid cell).
Write the assignment operator for this class. (It’s okay to just write the code that
would appear in the .cpp file; that is, you can just write the definition and assume the
declaration occured in the “public function declarations” above section.

CS 225 Final Exam—Sample Exam 1 2 Name:

(b) Consider the following code:

Foo theObject;
cout << theObject(6, 9) << endl;

Write a class Foo – specifically, write a function object class – so that in the code above,
theObject(6, 9) produces: the sum of the two arguments. In general, the function call
theObject(x, y) should return the sum of x and y.

CS 225 Final Exam—Sample Exam 1 3 Name:

2. [Analysis – 40 points].

(a) You have an red-black tree composed of n nodes that each have three pointers. Each
node points not only to its two children, but to its parent as well. (The root’s parent
pointer, points to NULL, since the root does not have a parent.
You have a pointer to the node in the red-black tree containing the minimum value in the
tree. You want to travel from the minimum node to the root of the tree, printing each
value you encounter along the way, and then travel from the root to the node containing
the AVL tree’s maximum value, again printing each value you encounter along the way.
Express the order of growth of the worst-case running time of this procedure, in Big-O
notation, and explain convincingly why your answer is correct.

CS 225 Final Exam—Sample Exam 1 4 Name:

(b) The algorithm known as heapsort was briefly mentioned in lecture once. The algorithm
sorts n integers by putting them all into a heap, and then calling DeleteMin repeatedly,
thus pulling the integers out of the heap, in order from lowest to highest. Express
the order of growth of the worst-case running time of heapsort, in Big-O notation, and
explain convincingly why your answer is correct.

CS 225 Final Exam—Sample Exam 1 5 Name:

(c) You have a graph where the vertices represent U.S. cities and the edges represent roads
that run directly between a given two cities. The graph is stored as an adjacency matrix
indexed from 0 through V - 1, where V is the number of cities in the graph and E is
the number of road segments between cities. You have a hash table containing the n
cities – to get the index for a city, you hash on the city’s name, and the hash table
returns an information record associated with that name, which includes the adjacency
matrix index for that city. Given all of that, what you want to do is to take two city
names, and determine if they are directly connected by a road segment. Express the
order of growth of the average-case running time of this procedure, in Big-O notation,
and explain convincingly why your answer is correct.

CS 225 Final Exam—Sample Exam 1 6 Name:

(d) You have an ordinary trie, holding n different words, all of which are no longer than L
characters (counting the null character at the end of a word). You want to perform F
find operations on the trie. Express the order of growth of the worst-case running time of
this procedure (that procedure being, “perform F find operations”), in Big-O notation,
and explain convincingly why your answer is correct.

CS 225 Final Exam—Sample Exam 1 7 Name:

3. [Algorithms – 64 points].

(a) Given a singly-linked list, and a pointer current to a node in the singly-linked list,
explain convincingly how you can implement InsertBefore in constant time.

(b) Imagine you have a sparse array with R rows and C columns, implemented by a “list
of arrays”. That is, there’s a list, and for every row that has at least one non-default
value, this list has a node for that row, containing the index of the row, and an array
of every possible column in that row. If every row in the sparse array has at least one
value, do we save any memory with this approach? Explain why or why not.

CS 225 Final Exam—Sample Exam 1 8 Name:

(c) Explain convincingly that a single rotation on a binary search tree, results in a tree that
is still a binary search tree.

CS 225 Final Exam—Sample Exam 1 9 Name:

(d) Explain convincingly that for a red-black removal, case 2a works. That is, when the
node or “NULL” which you’ve labelled “x” has a black sibling, and of that sibling’s two
children, the one furthest from “x” is black and the one closest to “x” is red, explain
what is done in that case, and why, and explain why we still have a legal red-black tree
after this case.

CS 225 Final Exam—Sample Exam 1 10 Name:

(e) We looked at a depth-first-search-based algorithm for finding the topological sort of a
graph. Explain what this algorithm was and why it worked.

CS 225 Final Exam—Sample Exam 1 11 Name:

(f) Explain the changes made to Dijkstra’s algorithn to obtain an implementation of Prim’s
Algorithm, and explain why once those changes are in place, we do indeed have an
implementation of Prim’s algorithm.

CS 225 Final Exam—Sample Exam 1 12 Name:

(g) Consider a hash table where h(x) = x mod 11 and h2(x) = 7 − x mod 7. Insert the
values 56, 27, 38, 25, 78, 50, and 45, in that order, into the hash table. Use double
hashing to resolve collisions.

56 27 38 25 78 50 45
h(x) 1 5 5 3 1 6 1
h2(x) 7 1 4 3 6 6 4

0 1 2 3 4 5 6 7 8 9 10

(h) If you were to insert the words cot, car, carpet, cow, and coworker into a Patricia tree,
not counting the leaves, how many nodes would there be? Explain your answer.

CS 225 Final Exam—Sample Exam 1 13 Name:

4. [List Reversal – 15 points].

You have the following ListNode class:

class ListNode {
public:

int element;
ListNode* next;
ListNode* prev;

};

and a doubly-linked list made up of such nodes, with a ListNode pointer head to the first
node and with the first node’s prev and the last node’s next equalling NULL. We will assume
it is publicly accessible, rather than nested in a class, for this problem.

Write a function ReverseParts which has two parameter and returns nothing. The first
parameter will be a reference to a ListNode pointer. This pointer will point to the head node
of a doubly-linked list (and thus would be NULL if the list were empty). This list will have
the prev of the first node and the next of the last node both pointing to NULL.

The second parameter will be a positive integer, which we will call n. This function should re-
verse every set of n values. For example, if the list had been 5->3->1->10-14->22->67->4->NULL
and n were 3, then the resultant list should be 1->3->5->22->14->10->4->67->NULL (the
set of two values at the end of the list likewise have their order reversed). You can assume
that n will be less than or equal to the list size. Whatever linked list this results in, the head
parameter should be pointing to the first node of that list when you are done.

void ReverseParts(ListNode*& head) {
// your code goes here

CS 225 Final Exam—Sample Exam 1 14 Name:

(List Reversal, continued)

CS 225 Final Exam—Sample Exam 1 15 Name:

5. [Comparison check – 15 points].

Given the following class:

class TreeNode {
public:

int element;
TreeNode* left;
TreeNode* right;

};

You have a tree built from the above node type. This tree is NOT a Binary Search tree, though
it is a binary tree, by definition. You want a function Greater that takes two parameters.
The first will be a pointer to a TreeNode. The second should be an integer value. The function
should return an array of all values greater than the parameter integer. The Array<int> you
return needs to be exactly the right size for the values it holds. You do not need to keep the
array sorted in any particular order. (In this problem, you are allowed to create additional
1-dimensional arrays – you have to, since you are returning one from your function.)

Array<int> Greater(TreeNode* ptr, int value) {
// your code goes here

CS 225 Final Exam—Sample Exam 1 16 Name:

(Verifier, continued)

CS 225 Final Exam—Sample Exam 1 17 Name:

6. [Complete Subgraph – 15 points].

You have the following EdgeNode class:

class EdgeNode {
public:

int index; // index of target vertex
EdgeNode* next; // ptr to next edge

};

Furthermore, you have a variable of type Array<EdgeNode*> that is indexed from 1 to the size
of the array (given by the Size() method in the Array class). The array is an adjacency list
implementation of a graph, of the kind we first discussed in lecture; the vertices have indices
from 1 to Size(). You can assume that each edge list in this adjacency list implementation
is sorted by target index.

Recall that a complete graph is a graph in which each vertex has every other vertex as
neighbors (you can assume no vertex can ever have an edge to itself, whether the graph is
defined “complete” or not). You want to write a method isSubgraphComplete which has
two parameters. The first is a reference to an Array<EdgeNode*> as described above. The
second is a sorted array of integers, indexed from 1 to the size of that array. Each integer
being stored as a value in this array, is a legal index for a cell of the adjacency list (i.e. each
integer is a vertex number).

You want to return 1 if the graph would be complete once you removed the vertices in the
second array. For example, if the vertices in the second array were 2, 3, and 8, then you are
returning 1 if and only if your graph would be complete once you remove vertices 2, 3, and
8 from the graph. (Note that you do not actually have to remove those vertices from the
graph!! We’re only asking what would happen if you did.)

int isSubgraphComplete(Array<EdgeNode*> graph, Array<int> ignored) {
// your code goes here

CS 225 Final Exam—Sample Exam 1 18 Name:

(Complete Subgraph, continued)

CS 225 Final Exam—Sample Exam 1 19 Name:

7. [Trie – 15 points].

You have a de la Briandais tree that stores strings made of lowercase letters. Assume that it
does NOT use the Patricia tree optimization, and that it is composed of individual nodes of
the following list node type:

class DeLaNode {
public:

char letter;
DeLaNode* subtree;
DeLaNode* nextInList;

};

To indicate leaves, we just set the null-character cell in that level’s array, to point to leaf
(which we’ll assume is a variable we’ve declared elsewhere).

You want to write a method numPrefixes that has three parameters. The first is a pointer
to a DeLaNode. The second is a positive integer n. The third is an integer holding the depth
of this node. You want to return the number of unique prefixes of exactly length n that
are represented in the trie. For example, if you had already inserted “car”, “carpet”, and
“cotton”, then you have two unique prefixes of length three – namely, “car”, and “cot”.

int numPrefixes(DeLaNode* ptr, int n, int level) {
// your code goes here

CS 225 Final Exam—Sample Exam 1 20 Name:

(Number of Prefixes, continued)

CS 225 Final Exam—Sample Exam 1 21 Name:

class Array:
Array(); // creates array of size 0
Array(int low, int hi); // creates array with index range (low, hi)
Array(const Array& origVal); // copy constructor
~Array(); // destructor
const Array& operator=(const Array& origVal); // assignment operator
const Etype& operator[](int index) const;
Etype& operator[](int index);
void Initialize(Etype initElement);
void SetBounds(int low, int hi); // changes bounds of array
int Size() const; // returns number of indices in index range
int Lower() const; // returns lower bound of index range
int Upper() const;

template <class Type1, class Type2>
class pair
{
public:

// ************ Member functions

// pair
// - default constructor
// - sets object to hold default values
// (on the initializer line, each member variable
// is being initialized to the default value
// of the appropriate type)
pair();

// ************* Member data
// - we intend for the data to be public, too

Type1 first; // variable of the first type
Type2 second; // variable of the second type

};

CS 225 Final Exam—Sample Exam 1 22 Name:

(scratch paper)

