University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination

CS 225 Data Structures and Software Principles
Sample Exam 1
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name:
NetID:
Lab Section (Day/Time):

e This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

e Do all 5 problems in this booklet. Read each question very carefully.

e You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. The page before the scratch paper has the member functions of the Array
class and the List class from the MPs.

e Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

e Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader
1 15
2 20
3 20
4 15
5 20
Total 90

CS 225 First Exam—Sample Exam 1 1 Name:

1. [Assignment Operator — 15 points].

Given the following class:

// this would be in the .h file

template <class Etype>

class Map {

private:
Array<Etype> items;
Array<String*> labels;
Etype* primaryValue;

public:

Map Q) ;

const Map& operator=(const Map& origVal);

// ...plus other functions we don’t care about here
3

Assume that all pointers that are in any way part of the implementation of Map, get set to
either NULL or the address of a dynamically object before you call the assignment operator.
(Or in other words, assume that when you call the assignment operator, no pointer is pointing
to garbage memory.) Write the definition code for the assignment operator (operator=) for
the class Map.

CS 225 First Exam—Sample Exam 1 2 Name:

(Assignment Operator, continued)

CS 225 First Exam—Sample Exam 1 3 Name:

2. [Analysis — 20 points].

(a) Given the following code, using a singly-linked implementation of the List ADT you
saw on MP3, express (using big-O notation) the order of growth of the running time of
the code below, in terms of n. Prove your answer is correct (i.e. explain your answer in
enough detail to be convincing). (10 points)

List<int> thelist;

for (int i = 1; i <= n; i++) // <-—- this is the n referred to above
thelList.InsertAfter(i);

thelList.Tail();

for (int i = 1; i < theList.Length(); i++) {
cout << thelList.Retrieve() << endl;
thelList——;

}

cout << thelList.Retrieve(); // prints first element

return O;

CS 225 First Exam—Sample Exam 1 4 Name:

(b) Imagine we have the following array-based implemenation of a stack:

class Stack {
private:
Array<int> theStack;
int numElements;
... // rest of class, including public functions

where theStack.Size() gives you the size of the array, which will be indexed from 1
through theStack.Size(), numElements stores the number of elements in the actual
stack itself (could be less than the total amount of space in the array), and the stack
is placed in order in the array so that the top element is at theStack[1], rather than
at theStack[numElements] as in lecture. You have no other member variables for this
Stack class.

Given a stack of size n implemented as above, what is what is the order of growth of the
running time of Pop(), in terms of n? Express your answer in big-O notation. Prove
your answer (i.e. explain your answer in detail sufficient enough to be convincing).

(10 points)

CS 225 First Exam—Sample Exam 1 5 Name:

3. [Move Tens — 20 points].

You have the following ListNode class:

class ListNode {
public:
int element;
ListNode* next;
ListNode* prev;

};

and a doubly-linked list made up of such nodes, with a ListNode pointer head to the first
node and with the first node’s prev and the last node’s next equalling NULL. We will assume
it is publicly accessible, rather than nested in a class, for this problem.

Write a function MoveTens which has one parameter and returns nothing. The parameter
will be a reference to a ListNode pointer. This pointer will point to the head node of a
doubly-linked list (and thus would be NULL if the list were empty). This list will hold only
positive integers, and will have the prev of the first node and the next of the last node both
pointing to NULL.

This function should move every node containing a 2-digit number to the start of the list. All
the nodes you move should remain in the same order relative to each other, and all the nodes
you do not move should remain in the same order, relative to each other. For example, if the
parameter list had been 4->502->10->12->7->33->5->821->11->103->NULL, then you are
moving 10, 12, 33, and 11 to the front of the list but keeping them in that order (10, 12, 33,
11). And the values you did not move stay in the same order they were in to begin with. So, af-
ter the function has run, the list should be 10->12->33->11->4->502->7->5->821->103->NULL.

Whatever linked list this results in, the head parameter should be pointing to the first node
of that list when you are done.

void MoveTens(ListNode*& head) {
// your code goes here

CS 225 First Exam—Sample Exam 1 6 Name:

(Move Tens, continued)

CS 225 First Exam—Sample Exam 1 7 Name:

4. [Generic Functions — 15 points].

(a) You are given the following generic function:

template <class Iter>
void printEveryOther(Iter first, Iter last) {
while (first !'= last) {
cout << *xfirst << " ";
first++;
if (first != last)
first++;
}
cout << "the end!" << endl;

}

Furthermore, you have a class 1ist as seen on the MPs (i.e. with a nested iterator
class, and you have made the declaration:

list<int> thelist;

and then inserted values such that the list looks as follows (where the asterisk indicates
the null position at the end of the list):

2 8 3 9 4 0 3 5 7 1 6 =*

Write some code that uses iterators for the list theList that we declared above, and the
template function above, to print the following line of text. Note that no iterators are
declared yet; you will need to do that yourself. (8 points)

8 9 0 5 the end!

CS 225 First Exam—Sample Exam 1 8 Name:

(b) Now, we want to change the generic function from part (a) to the following:

template <class Iter, class Comparer>
void VerifyAndPrintEveryOther(Iter first, Iter last, Comparer check) {
while (first != last) {
if (check(*first))
cout << *xfirst << " ";
first++;
if (first != last)
first++;
b
cout << "the end!" << endl;
b

You want to write a class whose objects can be passed as the third argument to the above
function, when the first two arguments above are iterators that point to collections of
integers (for example, iterators to lists of integers, or iterators to vectors of integers, or
etc.). The class should be such that the check(*first) expression above evaluates to
1 if *first is greater than or equal to 5, and returns O otherwise. It is okay to write
the definition for this class right into the class declaration itself (i.e. you don’t need to
divide things up into a .h and .cpp). (7 points)

CS 225 First Exam—Sample Exam 1 9 Name:

5. [Stack and Queue Interfaces — 20 points].

Imagine you are given a standard Stack class and Queue class, each of which also has a
Size () function that tells you how many items are in the data structure, and a no-argument
constructor that initializes the data structure to be empty.

You want to write a function Thirds which takes as an argument, a reference to a Queue.
The function should break the collection of elements inside the queue into three equal-sized
pieces (If the number of elements is not a multiple of three, then the piece closest to the front
gets an extra value and, if there is an additional extra value, the middle section would get
that one.) The Queue should be changed so that the second section of the Queue is reversed,
and the first and third sections are swapped. For example, given the following queue:

front rear
10 -2 0 5 7 2 -8 3 4 14 1

you want to change the queue into the following:

front rear
4 14 1 3 -8 2 7 10 -2 0 5

former reversed former
third second first
section section section

The catch is that we've declared a few local integers below for you to use (you don’t have
to use all of them, we’ve just given them to you in case you need them), and the only other
local variables you can create and use are new Queues and new Stacks.

void Thirds(Queue<int>& param) {
int templ, temp2, temp3;
// your code goes here

CS 225 First Exam—Sample Exam 1 10 Name:

(Stack and Queue Interfaces, continued)

CS 225 First Exam—Sample Exam 1 11 Name:

class Array:
Array(); // creates array of size 0
Array(int low, int hi); // creates array with index range (low, hi)
Array(const Array& origVal); // copy constructor
“Array(); // destructor
const Array& operator=(const Array& origVal); // assignment operator
const Etype& operator[](int index) const;
Etype& operator[] (int index);
void Initialize(Etype initElement);
void SetBounds(int low, int hi); // changes bounds of array

int Size() const; // returns number of indices in index range
int Lower() const; // returns lower bound of index range
int Upper() const; // returns upper bound of index range

class List:

List(); // creates empty list

List(const List& origVal); // copy constructor

“List(); // destructor

const List& operator=(const List& origVal); // assignment operator

void Clear(); // empties an existing list

void InsertAfter(const Etype& newElem); // inserts after current value
void InsertBefore(const Etype& newElem); // inserts before current value
void Remove(); // removes current value

void Update(const Etype& updateElem); // changes current value to parameter value
void Head(); // changes current marker to indicate first value
void Tail(); // changes current marker to indicate last value

List& operator++(int); // moves current marker one position forward

List& operator--(int); // moves current marker one position backward

const Etype& Retrieve() const; // returns the current value

int Find(const Etype& queryElem); // returns 1 if parameter is in list, else 0
int Length() const; // returns number of elements in list

void Print() const; // prints list to screen

CS 225 First Exam—Sample Exam 1 12 Name:

(scratch paper)

