
University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination
CS 225 Data Structures and Software Principles

Sample Exam 1
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• Do all 4 problems in this booklet. Read each question very carefully.

• You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 20

2 20

3 20

4 30

Total 90



CS 225 Second Exam—Sample Exam 1 1 Name:

1. [Analysis – 20 points (10 points each)].

(a) You are given a BinarySearchTree class whose insert method inserts its parameter
into the binary search tree, using the usual algorithm. Express, using big-O notation,
the order of growth of the worst-case running time of the following code, as n increases.
Justify your answer.

BinarySearchTree bst; // creates an empty binary search tree
for (int i = 1; i <= n; i++) // this is the n we are talking about above

bst.insert(i);



CS 225 Second Exam—Sample Exam 1 2 Name:

(b) You have a min-heap of n values. You have a function IncreasePriority(int i, int
addition) which will take the value at index i, and increase its priority value by adding
the value addition to it. Now that the priority of this value has been increased, you
might not have a legal min-heap any longer, so you need to then do the minimum work
necessary to repair the min-heap. IncreaseKey does all that. What is the worst-case
running time of IncreaseKey? Express your answer in Big-O notation and explain
convincingly why your answer is correct.



CS 225 Second Exam—Sample Exam 1 3 Name:

2. [Verifier – 20 points].

Given the following two classes:

class IntTriple { class TreeNode {
public: public:

int first; int element;
int second; TreeNode* left;
int third; TreeNode* right;

}; };

you want a function Verify that takes one parameter, a pointer to a TreeNode. This function
should return an object of type IntTriple, whose member variable first will hold 1 if the
parameter pointer points to a binary search tree, and which will instead hold 0 if the parameter
pointer points to a binary tree that is NOT a binary search tree. You can use the other two
variables of the IntTriple however you like. Please note that if the parameter pointer is
NULL, then that is considered to be a binary search tree (although an empty one).

IntTriple Verify(TreeNode* ptr) {
// your code goes here



CS 225 Second Exam—Sample Exam 1 4 Name:

(Verifier, continued)



CS 225 Second Exam—Sample Exam 1 5 Name:

3. [Lists of Tree Values – 15 points].

You have the following two standard node classes:

class ListNode { class TreeNode {
public: public:

int element; int element;
ListNode* next; TreeNode* left;
ListNode* prev; TreeNode* right;

}; };

Write a function TreeToList which takes as a parameter, a pointer to a TreeNode which is
the root of a binary search tree. This function should return a ListNode pointer to a list of
all elements in the binary search tree, in numerical order from lowest to highest (i.e. your list
should be sorted). If the parameter TreeNode pointer is NULL, then the returned ListNode
pointer should also be NULL. (Hint: some recursion can help you here.)

ListNode* TreeToList(TreeNode* ptr) {
// your code goes here



CS 225 Second Exam—Sample Exam 1 6 Name:

(List of Tree Values, continued)



CS 225 Second Exam—Sample Exam 1 7 Name:

4. [Algorithms – 30 points (6 points each)].

(a) Explain convincingly that Level-Order traversal on a binary tree of n nodes is O(n).



CS 225 Second Exam—Sample Exam 1 8 Name:

(b) Assume you have a disjoint set structure. Furthermore, assume you are NOT using
path compression. Justify the use of the union-by-size smart-union algorithm, rather
than the union-by-height smart-union algorithm. That is, why wouldn’t you always use
union-by-height in these circumstances? What advantage does union-by-size give you
that can make it worth using?



CS 225 Second Exam—Sample Exam 1 9 Name:

(c) The AVL Tree balance property was that for any node, the two subtrees of that node
differed by at most 1 in height. Why not 0? That is, explain convincingly that requiring
each node to have two subtrees of equal height would be problematic.



CS 225 Second Exam—Sample Exam 1 10 Name:

(d) In the red-black tree insertion algorithm, all the cases for handling a red-parent-with-
red-child conflict (we’ll refer to this as a “red-red conflict”) assume that there is another
level above the red-red conflict – i.e. they assume that the upper red node in the red-red
conflict has a parent. We did not have any case to handle the situation where you have
a red node, and the parent of that node happens to be red, but that red parent node
has no parent itself. Explain convincingly why we do not need such a case.



CS 225 Second Exam—Sample Exam 1 11 Name:

(e) Explain convincingly that for a B-Tree of order b (remember, we said the order, b, would
always be an odd number), splitting a B-tree node during an insertion must always leave
an extra index value that could be moved into the parent of the split node.



CS 225 Second Exam—Sample Exam 1 12 Name:

(scratch paper)


