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Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTIONS
NetID:
Lab Section (Day/Time):

e This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

e Do all 4 problems in this booklet. Read each question very carefully.

e You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

e Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

e Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader

1 20
2 20
3 20
4 30

Total 90
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1. [Analysis — 20 points (10 points each)].

(a) You are given a BinarySearchTree class whose insert method inserts its parameter
into the binary search tree, using the usual algorithm. Express, using big-O notation,
the order of growth of the worst-case running time of the following code, as n increases.
Justify your answer.

BinarySearchTree bst; // creates an empty binary search tree
for (dnt i = 1; i <= n; i++) // this is the n we are talking about above
bst.insert(i);

Since we are inserting the values in numerical order, at any point while the above code
snippet is running, our binary tree will have no left subtrees — i.e. if there are k nodes,
they are in a single line connected by right pointers, with the left pointer of every node
pointing to NULL.

In addition, again since we are inserting the values in numerical order, each insertion
will move down the “list” of all the values that have been inserted earlier — that is, we’ll
keep travelling to the right, through the nodes 1, 2, 3, 4, .... k-1, before we reach a
NULL pointer and can insert value k. This is because, if you are inserting k, whatever
node you are at contains some value between 1 and k-1, inclusive, so it is guaranteed to
be less than k and you are guaranteed to move to the right subtree with your recursive
call.

And each recursive call takes constant time. So, the first insertion needs only one
recursive call, inserting the value 2 needs two calls total, inserting the value 3 needs 3
calls total, etc. To insert the values 1 through n, you will need 1 + 2 + 3 4 ... 4 n calls,
and that sum is quadratic.
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(b) You have a min-heap of n values. You have a function IncreasePriority(int i, int
addition) which will take the value at index i, and increase its priority value by adding
the value addition to it. Now that the priority of this value has been increased, you
might not have a legal min-heap any longer, so you need to then do the minimum work
necessary to repair the min-heap. IncreaseKey does all that. What is the worst-case
running time of IncreaseKey? KExpress your answer in Big-O notation and explain
convincingly why your answer is correct.

If the priority value within a min-heap nodes increases, it will still be greater than its
parent — since it was already greater than its parent (due to the whole structure being
a legal min-heap prior to the IncreasePriority operation) and it’s just gotten bigger.
However, before the operaton, the value was smaller than its children, and now there is
a possibility is is larger than its children. In fact, if we consider the subtree that this
node is a root of, this node used to be the smallest node in that subtree, by definition,
and yet now it is potentially not the smallest value anymore.

So we have a situation where there is a complete tree (the subtree rooted at this node)
where everything is partially ordered except for possibly the root value. This is no
different than the stage of DeleteMin right after writing your last value into the first
cell. i.e., to summarize all this up, the IncreasePriory operation requires nothing more
than taking the increased priorty value and percolating it downward in the same way
you would do for DeleteMin or BuildHeap. And since the heap has height O(logn), this
operation is at most O(logn).
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2. [Verifier — 20 points].

Given the following two classes:

class IntTriple { class TreeNode {
public: public:

int first; int element;

int second; TreeNodex*x left;

int third; TreeNode* right;
}; +

you want a function Verify that takes one parameter, a pointer to a TreeNode. This function
should return an object of type IntTriple, whose member variable first will hold 1 if the
parameter pointer points to a binary search tree, and which will instead hold 0 if the parameter
pointer points to a binary tree that is NOT a binary search tree. You can use the other two
variables of the IntTriple however you like. Please note that if the parameter pointer is
NULL, then that is considered to be a binary search tree (although an empty one).

IntTriple Verify(TreeNode* ptr) {
// your code goes here
SOLUTION ON NEXT PAGE
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(Verifier, continued)

IntTriple Verify(TreeNodex ptr) {
// we will use the other two variables of an IntTriple to hold
// the min and max of the tree
IntTriple returnVal;

if (ptr == NULL) {

}

returnVal.first = 1; // empty binary tree is a BST
returnVal.second = 0; // min of empty tree

returnVal.third = -1; // max of empty tree, it being < min
// signals it was empty tree

else {

IntTriple left, right;

left = Verify(ptr->left);

right = Verify(ptr->right);

returnVal.first = 1; // assume it’s a BST unless we find otherwise
returnVal.second = ptr->elem; // assume root value is min and max
returnVal.third = ptr->elem; // unless we find otherwise

if ((Qeft.first == 0) || (right.first == 0))
returnVal.first = 0; // not BST if subtrees not BSTs

// if root < max of left subtree, or root > min of right subtree, not BST
if (((left.second <= left.third) && (left.third > ptr->element)) ||
((right.second <= right.third) && (ptr->element > right.second)))
returnVal.first = 0;

if (left.second <= left.third) { // if left subtree exists
if (left.second < returnVal.second) // if smaller min, save it
returnVal.second = left.second;
if (left.third > returnVal.third) // if bigger max, save it
returnVal.third = left.third;

if (right.second <= right.third) { // if right subtree exists
if (right.second < returnVal.second) // if smaller min, save it
returnVal.second = right.second;
if (right.third > returnVal.third) // if bigger max, save it
returnVal.third = right.third;

return returnVal;
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3. [Lists of Tree Values — 15 points].

You have the following two standard node classes:

class ListNode { class TreeNode {
public: public:
int element; int element;
ListNode* next; TreeNodex left;
ListNode* prev; TreeNode* right;
}; +

Write a function TreeToList which takes as a parameter, a pointer to a TreeNode which is
the root of a binary search tree. This function should return a ListNode pointer to a list of
all elements in the binary search tree, in numerical order from lowest to highest (i.e. your list
should be sorted). If the parameter TreeNode pointer is NULL, then the returned ListNode
pointer should also be NULL. (Hint: some recursion can help you here.)

ListNode* TreeToList(TreeNode* ptr) {
// your code goes here
SOLUTION ON NEXT PAGE
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(List of Tree Values, continued)

ListNode* TreeToList(TreeNodex ptr) {
// your code goes here
if (ptr == NULL)
return NULL;
ListNode* beforeme;
ListNode* afterme;
ListNode* me;

me = new ListNode(); // node of the list with
me->element=ptr->element; // ’root’ element

beforeme = TreeTolList(ptr->left); //first listnode of ’left subtree’
afterme = TreeToList(ptr->right); //first listnode of ’right subtree’

me->next = afterme; // point next of ’root’ node to
// first node of ’right subtree’

if (afterme != NULL) // if there are nodes in the right subtree
afterme->prev = me; // point prev of first node of
// ’right subtree’ to ’root’ node
if (beforeme != NULL) {
ListNode* temp = beforeme;

while(temp->next != NULL) // traverse to the end node of
temp=temp->next; // ’left subtree’ list
temp->next = me; // point next of end node of’left subtree’
// to ’root’ node
me->prev=temp; // point prev of ’root’ node to

// end node of ’left subtree’
return beforeme;
}
else
return me;
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4. [Algorithms — 30 points (6 points each)].

(a) Explain convincingly that Level-Order traversal on a binary tree of n nodes is O(n).

There are 2n+1 total vertex pointers in the tree, counting the root pointer — n of those to
real nodes, and n+1 of them to null pointers. Over the lifetime of this algorithm, every
one of these pointers will be enqueued — the root pointer is enqueued before the loop
begins, and every other pointer is a child of some node, and when you dequeue that node,
you’ll enqueue its children. And, every one of those pointers will be dequeued, since the
loop runs until the queue is empty. So there are 2n+1 enqueues and 2n+1 dequeues.
Other than that, there’s just a bit of additional overhead per pointer — there’s one loop
pass (and thus one loop comparison) for each dequeue, plus the last loop comparison
which determines the queue is empty. And, every time we dequeue a pointer, we check it
to see if it’s null or not. So, overall, for each of 2n+1 pointers, you will (1) enqueue the
pointer, (2) dequeue the pointer, (3) check to see if it’s null, and (4) when that pointer
is in front of the queue, the loop condition will be checked. All that adds up to constant
time, and constant times 2n+1 is a linear-time operation.
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(b) Assume you have a disjoint set structure. Furthermore, assume you are NOT using
path compression. Justify the use of the union-by-size smart-union algorithm, rather
than the union-by-height smart-union algorithm. That is, why wouldn’t you always use
union-by-height in these circumstances? What advantage does union-by-size give you
that can make it worth using?

If we call the tree that gets pointed to, “A”, and refer to the tree whose root node is
changed to point to “A”, via the label “B”, then any union will necessarily increase the
depth of every node in “B” by 1, since now those nodes go through an extra edge — the
new pointer from B’s former root, to A — en route to their new root, A. By pointing the
smaller sized tree to the larger sized tree, you increase the depth of fewer nodes than if
you had done things the other way around. That is, union-by-size keeps the expected
depth of a node as small as possible, by always choosing to increase the depth of fewer
nodes rather than more nodes.
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(¢) The AVL Tree balance property was that for any node, the two subtrees of that node
differed by at most 1 in height. Why not 07 That is, explain convincingly that requiring
each node to have two subtrees of equal height would be problematic.

Such a requirement simply isn’t possible to meet for many trees. For example, if you
have four values, one must be at the root, two values on one side of the root, and one
value on the other side of the root. The side with one node is a subtree of height 0; there
is no way to arrange the two nodes on the other side to form a subtree of height 0.



CS 225 Second Exam—Sample Exam 1 10 Name:

(d) In the red-black tree insertion algorithm, all the cases for handling a red-parent-with-
red-child conflict (we’ll refer to this as a “red-red conflict”) assume that there is another
level above the red-red conflict — i.e. they assume that the upper red node in the red-red
conflict has a parent. We did not have any case to handle the situation where you have
a red node, and the parent of that node happens to be red, but that red parent node
has no parent itself. Explain convincingly why we do not need such a case.

If the node we are inspecting has a red parent but no grandparent, it means the parent
of the node we are inspecting is the root. And yet, since we work from the bottom
upward when rebalancing and recoloring the tree, if we are currently inspecting the level
below the root, it means we have not reached the root yet. Therefore, we could not have
colored the root red yet ourselves. And the root is black at the start of every insertion
operation. So the case described above simply cannot happen — if we hadn’t reached
the root yet, it would still be black for certain, so there can be no case where we are
inspecting a node and it has a red root for a parent.
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(e) Explain convincingly that for a B-Tree of order b (remember, we said the order, b, would
always be an odd number), splitting a B-tree node during an insertion must always leave
an extra index value that could be moved into the parent of the split node.

The maximum number of children a B-tree node is allowed to have is b children, and you
always have one fewer indices than children. So, if the node is overflowing, it means you
have b+1 children and thus b indices. When you split that, half the children go to each
half, so each half gets (b+1)/2 children, and since you always have one fewer indices
than children, each half should also have ((b+1)/2)-1 indices. But, if each half has
((b+1)/2)-1 indices, the two halves together have (((b+1)/2)-1) + (((b+1)/2)-1)
indices, which equals b-1 indices. Yet, our node before the split had b indices. So, we
know there is an index left over that was not placed in either of the two halves of the
split.
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(scratch paper)




