University of Illinois at Urbana-Champaign
Department of Computer Science

Third Examination

CS 225 Data Structures and Software Principles
Sample Exam 1
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name:
NetID:
Lab Section (Day/Time):

e This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

e You should have 6 sheets total (the cover sheet, plus numbered pages 1-10). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

e Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

e Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader

1 20
2 20
3 20
4 30

Total 90

CS 225 Third Exam—Spring, 2004 1 Name:

1. [Ghost of Euler — 20 points].
You have the following EdgeNode class:

class EdgeNode {
public:
int index; // index of target vertex
EdgeNode* next; // ptr to next edge
+;

Furthermore, you have a variable of type Array<EdgeNodex*> that is indexed from 1 to the
size of the array (given by the Size () method in the Array class). The array is an adjacency
list implementation of a graph, of the kind we first discussed in lecture; the vertices have
indices from 1 to Size().

You want to write a method numOddDegree which has one parameter, a reference to an
Array<EdgeNode*> as described above. You can assume this adjacency list represents an
undirected graph. You want to return the number of vertices with odd degree. (The degree
of a vertex in an undirected graph, is the number of edges which that vertex is an endpoint
for. So, you want to know how many vertices are endpoint to an odd number of edges.) You
can assume the graph has no self-loops (i.e. no vertex has an edge to itself.)

int numOddDegree (Array<EdgeNode*>& graph) {
// your code goes here

CS 225 Third Exam—Spring, 2004 2 Name:

(Ghost of Euler, continued)

CS 225 Third Exam—Spring, 2004 3 Name:

2. [Vertices Nearby — 20 points].

You are given an adjacency matrix implementation of an unweighted, directed graph — the
graph has vertices labelled with indices 0 through n-1, and you are given the value n and a
two-dimensional array with n rows and n columns, both indexed from O through n-1. You
want to write a method that takes those two values (the integer n and an int** to the
two-dimensional array) and returns a 1 if the distance from any vertex to any other vertex is
always 2 or less, and returns a 0 if there is at least one vertex for which the minimum distance
to some other vertex is 3 or more. You are allowed to create additional one-dimensional arrays
if you need to.

int DistanceCheck(int** graph, int n) {
// your code goes here

CS 225 Third Exam—Spring, 2004 4 Name:

(Vertices Nearby, continued)

CS 225 Third Exam—Spring, 2004 5 Name:

3. [Analysis — 20 points].

(a) You are given a graph which is implemented by an adjacency matrix. This matrix has
V rows and V columns, and represents a graph with V vertices and E edges. What is the
order of growth of the worst-case running time for adding a vertex to the graph? Express
your answer in Big-O notation and explain convincingly why your answer is correct.

(b) You are given a graph which is implemented via an adjacency list. This adjacency list is
of the kind we first discussed in class —i.e. an array of vertices, with each cell of the array
pointing to a linked list of edge nodes. You want to find the vertex with the greatest
number of departing edges. What will be the worst-case running time of this algorithm,
in terms of V and E? Express your answer in big-O notation and explain convincingly
why your answer is correct.

CS 225 Third Exam—Spring, 2004 6 Name:

4. [Algorithms — 30 points (6 points each)].

(a) Give an example of a undirected, weighted graph that has two edges of equal weight, for
which there is still a unique minimum spanning tree.

(b) In the depth-first-search-based implementation of topological sort, if we moved the “post-
visit” code to instead be “pre-visit” code (i.e. if we took the code we run after we
explore a vertex’s neighbors, and instead run it before we explore a vertex’s neighbors),
the algorithm will no longer work. Explain why.

CS 225 Third Exam—Spring, 2004 7 Name:

(¢) When we implement breadth-first-search, it is important that we mark a vertex as “en-
countered” before it is enqueued, rather than after it is dequeued. Explain why it is

important —i.e. explain why we couldn’t instead choose to mark a vertex “encountered”
after dequeueing it.

CS 225 Third Exam—Spring, 2004 8 Name:

(d) Explain cycle detection for Kruskal’s algorithm. That is, explain why disjoint sets are
used for this part of the algorithm (i.e. explain what the equivalence relation is that
we are trying to model with our disjoint sets structure), and explain how the disjoint
sets structure gets used to figure out whether to accept or reject an edge that is being
considered.

CS 225 Third Exam—Spring, 2004 9 Name:

(e) For the given graph, run Dijkstra’s algorithm, indicating in the table below the distances
at each vertex at the end of each step (d,), and whether or not the vertex has been marked
known yet at the end of each step (k).

=9
<
>
S|
S
S]
PT‘
S|
S
S]
>
S|
S
S]
>
<
=9
<
>
<
=
S]
>
<
L
<
>
<
=
S]
>
S|

Q= O QR > <
8181=188(8|8

’ - ‘ Start | Step1 | Step2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7

CS 225 Third Exam—Spring, 2004 10 Name:

(scratch paper)

