
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Sample Exam 2
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTIONS

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

• Do all 5 problems in this booklet. Read each question very carefully.

• You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. The page before the scratch paper has the member functions of the Array
class and the List class from the MPs.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 15

2 20

3 20

4 15

5 20

Total 90



CS 225 First Exam—Sample Exam 2 1 Name:

1. [The Big Three – 15 points].

Given the following class:

// this would be in the .h file
template <class KeyType, class ElemType>
class Dictionary {

public:
//default constructor
Dictionary();

//copy constructor
Dictionary(const Dictionary& origVal);

//destructor
~Dictionary();

// ... plus other functions we don’t care about here
private:

Array<KeyType> keys;
Array<ElemType*> elements;
int size;

};

Assume that all pointers that are in any way part of the implementation of Dictionary, get
set to either NULL or the address of a dynamically object at some point before the object is
passed as an argument to the copy constructor. (Or in other words, assume that no pointer
you need to read, is pointing to garbage memory.) Write the definition code for the copy
constructor for the above class.

template <class KeyType, class ElemType>
Dictionary<KeyType, ElemType>::Dictonary(const Dictionary<KeyType, ElemType>& origVal)
{

size = origVal.size;
keys = origVal.keys; // we can assume KeyType has an operator=
elements.SetBounds(origVal.elements.Lower(), origVal.elements.Upper());

// we can assume ElemType has a copy constructor
for (int i = elements.Lower(); i <= elements.Upper(); i++)
{

if (origVal.elements[i] == NULL)
elements[i] = NULL;

else
elements[i] = new ElemType(*(origVal.elements[i]));

}
}



CS 225 First Exam—Sample Exam 2 2 Name:

(The Big Three, continued)



CS 225 First Exam—Sample Exam 2 3 Name:

2. [Analysis – 20 points].

(a) Given the following code, using a singly-linked implementation of the List ADT you saw
on the MPs (i.e. head and tail pointers, a size variable to hold the size, and no dummy
nodes), express (using big-O notation) the order of growth of the worst-case running
time of the code below, in terms of n. Prove your answer is correct (i.e. explain your
answer in enough detail to be convincing). (10 points)

List<int> theList;
for (int i = 1; i <= n; i++) // <--- this is the n referred to above

theList.InsertAfter(i);
theList.Head();
int len = theList.Length();
for (int i = 1; i < len; i++) {

cout << theList.Retrieve() << endl;
theList.Remove();
theList.Head();

}

The list functions are as follows:

• InsertAfter is O(1), as discussed in class
• Head() just points current to head,
• Length() just returns the value of size,
• Retrieve() just returns current->element
• ...so each of those three is O(1)
• Remove() is O(1) if the front node of the list is being removed.

So, the first loop is O(n), since we perform n insertions. For the second loop, well, before
each Remove() we always have called Head() and Retreive() and then not accessed the
list otherwise...meaning that every time Remove() is called, we are removing the front
node of the list. So, the code within the second loop is O(1) plus O(1) plus O(1), which
is O(1), and thus the second loop, which runs the O(1) loop body n times, is O(n).
Thus the overall running time is O(n).



CS 225 First Exam—Sample Exam 2 4 Name:

(b) Given the same list implementation as in part (a), express (using big-O notation) the
order of growth of the worst-case running time of the code below, in terms of n. Prove
your answer is correct (i.e. explain your answer in enough detail to be convincing). (10
points)

List<int> theList;
for (int i = 1; i <= n; i++) // <---- this is the n referred to above

theList.InsertBefore(i);
theList.Tail();
theList.Remove();

InsertBefore is O(1), as discussed in class. Since we have a tail pointer, Tail() is
O(1), since it just sets current to point to the same place as tail. However, in the
absence of a dummy node, Remove() from the end of a singly-linked list is O(n). So, in
the code above, the loop is O(n), since we perform n insertions at O(1) each. Then, the
call to Tail() is O(1) and the call to Remove() – now that we are at the end of the list
– is O(n). In total, we have O(n) plus O(1) plus O(n) which is O(n).



CS 225 First Exam—Sample Exam 2 5 Name:

3. [Remove Sublist – 20 points].

You have the following ListNode class:

class ListNode {
public:

int element;
ListNode* next;
ListNode* prev;

};

and a doubly-linked list made up of such nodes, with a ListNode pointer head to the first
node and with the first node’s prev and the last node’s next equalling NULL. We will assume
it is publicly accessible, rather than nested in a class, for this problem.

Write a function RemoveSublist which has three parameters and returns nothing. The first
parameter will be a reference to a ListNode pointer. This pointer will point to the head node
of a doubly-linked list; we assume this list has at least one node and has no duplicate values.

The second parameter will be an integer that is definitely a value in the list. The third pa-
rameter will be a non-negative integer indicating how many nodes in each direction from the
second parameter’s node, should be removed. For example, if the parameter list had been
4->502->10->12->7->33->5->821->11->103->90->NULL, and the second and third param-
eters are 33 and 2, then you want to remove everything within 2 nodes of 33 – that is, 12, 7,
33, 5, and 821. In that case, the resultant list would be 4->502->10->11->103->90->NULL.
You can assume that the third parameter will not be so big as to extend past the ends of
the list – for example, in the first list above, if 33 is the second parameter, then the third
parameter could be 5, but not 6. If the third parameter were 0, only 33 would be removed.

Whatever linked list this results in, the head parameter should be pointing to the first node
of that list when you are done.

void RemoveSublist(ListNode*& head, int val, int range) {
// your code goes here
SOLUTION ON NEXT PAGE



CS 225 First Exam—Sample Exam 2 6 Name:

(RemoveSublist, continued)

void RemoveSublist(ListNode*& head, int val, int range) {
// your code goes here
ListNode* temp = head;
while (temp->element != val)

temp = temp->next;

ListNode* left = temp;
ListNode* right = temp;
for (int i = 1; i <= range; i++) {

left = left->prev;
right = right->next;

}
// now left and right point to the first and last nodes
// that need to be deleted

if (left == head)
head = right->next;

else
left->prev->next = right->next;

if (right->next != NULL)
right->next->prev = left->prev;

// now the section [left, right] is removed from the main list

right->next = NULL;
while (left != NULL) {

right = left->next;
delete left;
left = right;

}
// nodes we took out of list are now deleted

}



CS 225 First Exam—Sample Exam 2 7 Name:

4. [Generic Functions – 15 points].

(a) You are given the following generic function:

// assumes that the type which iterators point to, supports operator!=
template <class Iter>
int isPalindrome(Iter first, Iter last) {

if (first == last) // empty range
return 1;

else {
last--;
while (first != last) {

if (*first != *last)
return 0;

else {
first++;
if (first == last)

return 1;
else

last--;
}

}
return 1;

}
}

Furthermore, you have a class list as seen on the MPs (i.e. with a nested iterator
class, and you have made the declaration:

list<int> theList;

and then inserted values such that the list looks as follows (where the asterisk indicates
the null position at the end of the list):

2 8 3 9 4 0 3 5 7 1 6 *

Write some code that uses iterators for the list theList that we declared above, and
the template function above, to print a 1 if the above list is a palindrome and 0 if it is
not. (It is not, but let the template function decide that.) Note that no iterators are
declared yet; you will need to do that yourself, if you decide you need iterator variables.
(6 points)

cout << isPalindrome(theList.begin(), theList.end()) << endl;
// OR
list<int>::iterator it1, it2;
it1 = theList.begin();
it2 = theList.end();
cout << isPalindrome(it1, it2) << endl;



CS 225 First Exam—Sample Exam 2 8 Name:

(b) Now, we want to change the generic function from part (a) to the following:

template <class Iter, class Comparer>
int isPalindrome(Iter first, Iter last, Comparer check) {

if (first == last) // empty range
return 1;

else {
last--;
while (first != last) {

if (!check(*first, *last))
return 0;

else {
first++;
if (first == last)

return 1;
else

last--;
}

}
return 1;

}
}

You want to write a class whose objects can be passed as the third argument to the above
function, when the first two arguments above are iterators that point to collections of
integers (for example, iterators to lists of integers, or iterators to vectors of integers,
or etc.). The class should be such that the check(*first, *last) expression above
evaluates to 1 if the two integer arguments are within 10 of each other, and evaluates to
0 otherwise. It is okay to write the definition for this class right into the class declaration
itself (i.e. you don’t need to divide things up into a .h and .cpp). (9 points)

class Answer {
public:

int operator()(int val1, int val2) {
if ((val1 - val2 <= 10) && (val2 - val1 <= 10))

return 1;
else

return 0;
}

}



CS 225 First Exam—Sample Exam 2 9 Name:

5. [Stack and Queue Interfaces – 20 points].

Imagine you are given a standard Stack class and Queue class, each of which also has a
no-argument constructor that initializes the data structure to be empty.

You want to write a function Quads which takes as an argument, a reference to a Queue. The
function should break the collection of elements inside the queue into groups of four, and
reverse the groups of four. (You might not have a complete group of four at the end of the
queue.) For example, given the following queue:

front rear
10 -2 0 5 7 2 -8 3 4 14 1 19 7 3

you want to change the queue into the following:

front rear
5 0 -2 10 3 -8 2 7 19 1 14 4 3 7
------------- ----------- ------------- ----

The catch is that we’ve declared a few local integers below for you to use (you don’t have
to use all of them, we’ve just given them to you in case you need them), and a local Stack
and Queue, and you cannot create any other local variables of any kind – not even additional
loop counters or pointers. So, you will need to perform some stack and queue manipulation
to solve this problem.

void Quads(Queue<int>& param) {
int tempVal, i; // hint : i would be a useful loop counter
Stack s; // not the best variable names, but you have
Queue q; // less to write this way
// your code goes here
while (!param.isEmpty()) {

i = 0;
while ((!param.isEmpty()) && (i < 4)) {

tempVal = param.dequeue();
s.push(tempVal);
i++;

}

while (!s.isEmpty()) {
tempVal = s.pop();
q.enqueue(tempval);

}
}
while (!q.isEmpty()) {

tempVal = q.dequeue();
param.enqueue(tempVal);

}
}



CS 225 First Exam—Sample Exam 2 10 Name:

(Stack and Queue Interfaces, continued)



CS 225 First Exam—Sample Exam 2 11 Name:

class Array:
Array(); // creates array of size 0
Array(int low, int hi); // creates array with index range (low, hi)
Array(const Array& origVal); // copy constructor
~Array(); // destructor
const Array& operator=(const Array& origVal); // assignment operator
const Etype& operator[](int index) const;
Etype& operator[](int index);
void Initialize(Etype initElement);
void SetBounds(int low, int hi); // changes bounds of array
int Size() const; // returns number of indices in index range
int Lower() const; // returns lower bound of index range
int Upper() const; // returns upper bound of index range

class List:
List(); // creates empty list
List(const List& origVal); // copy constructor
~List(); // destructor
const List& operator=(const List& origVal); // assignment operator
void Clear(); // empties an existing list
void InsertAfter(const Etype& newElem); // inserts after current value
void InsertBefore(const Etype& newElem); // inserts before current value
void Remove(); // removes current value
void Update(const Etype& updateElem); // changes current value to parameter value
void Head(); // changes current marker to indicate first value
void Tail(); // changes current marker to indicate last value
List& operator++(int); // moves current marker one position forward
List& operator--(int); // moves current marker one position backward
const Etype& Retrieve() const; // returns the current value
int Find(const Etype& queryElem); // returns 1 if parameter is in list, else 0
int Length() const; // returns number of elements in list
void Print() const; // prints list to screen



CS 225 First Exam—Sample Exam 2 12 Name:

(scratch paper)


