University of Illinois at Urbana-Champaign
Department of Computer Science

Second Examination

CS 225 Data Structures and Software Principles
Sample Exam 2
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTIONS
NetID:
Lab Section (Day/Time):

e This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

e Do all 5 problems in this booklet. Read each question very carefully.

e You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

e Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

e Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader
1 12
2 30
3 18
4 15
5 15
Total 90

CS 225 Second Exam—Sample Exam 2 1 Name:

1. [Short Answer — 12 points (4 points each)].

(a)

What was the “problem” with using path compression and union-by-height together?
That is, what difficulty does using the two techniques together present? Please be
specific. (The word “problem” is in quotes because we said it turned out that this
“problem” didn’t actually affect things too badly, even if it seems like it would.)

Path compression (potentially) changes the height of the tree, due to (potentially) short-
ening a path that was (potentially) the deepest path in the tree. In that case, the height
stored at the root would become incorrect, as neither path compression nor union-by-
height has any provision for recalculating the correct height in such a circumstance (and
adding one would make either algorithm far too expensive, time-wise).

If you have a complete tree of 17 nodes, how many nodes are on the deepest level?

Insert the integers 1 through 6, in that order, into an AVL tree. Draw the resulting
tree. How many rotation operations, total, did you perform? Count a “double rotation”
operation as one rotation operation.

3 rotations total

CS 225 Second Exam—Sample Exam 2 2 Name:

2. [Algorithms — 30 points (6 points each)].

(a)

Explain why an in-order traversal on a binary search tree should produce the values of
the tree in lexigraphical order (i.e. numerical, alphabetical, or whatever the order is that
is appropriate for those values).

An in-order traversal will process all the values in the left subtree of the root before
processing the root. Now, since the left subtree consists of all the values in the tree that
are less than the root, all the values less than the root will be processed before the root
itself. Likewise for the right subtree — an in-order traversal will process all the values in
the right subtree of the root, after the root is processed, and since all the values greater
than the root are in the right subtree, that means the root is processed prior to the
processing of any values greater than the root. So the root is guaranteed to be placed in
the correct order relative to its descendants. And since this process is recursive, every
node is guaranteed to be placed in the proper order relative to its descendants, and thus
all the values are in the proper order.

In an AVL tree, why does storing the height of a subtree, in the root node of that subtree,
improve the efficiency of the AVL rebalancing work (versus not storing the height at all)?

We want to be able to recalculate the height of a node quickly, and yet, to calculate the
height of a node, we would need to find the heights of both subtrees, so that we could
compare the heights and do the appropriate arithmetic. If the height of every node is
stored in that node, then given a pointer to a node, learning the heights of that node’s
children is simply a matter of reading them from the child nodes — which is constant
time. But if we need to calculate the height of your node from scratch, then we will
need to make a recursive call on every descendant of that node, which could take as
long as linear time, rather than constant time. So, storing heights in nodes means that,
at each node, knowing the heights of subtrees (which we need for rebalancing) can be
accomplished in constant time, not linear time.

CS 225 Second Exam—Sample Exam 2 3 Name:

(¢) After performing a combine operation during B-Tree removal, why is it that we need to
check the parent for underflow? i.e. justify that such a combine operation could have
caused the parent to underflow.

Combining a node merges two nodes into one...so where the parent used to have two
nodes, it now has just one. So if the parent had the minumum number of children before,
it now has one less than the minimum number of children, because two of those children
have been combined into one.

(d) Explain why we can implement a complete tree using an array — that is, explain why we
don’t lose information when we get rid of the pointers, i.e. explain why it is that, given
an array, we can always produce the corresponding complete tree.

Because of the way a complete tree is defined, the number of nodes defines the structure
— that is, every complete tree of N nodes, has those nodes in the same place as every
other complete tree of N nodes. And the array is just the level order traversal of the
complete tree. So, given an array with N elements, we know exactly what structure the
tree is supposed to have, and we know how that tree was traversed to produce the array,
meaning we know what array cells correspond to what nodes in the tree.

CS 225 Second Exam—Sample Exam 2 4 Name:

(e) Explain the “repair case” of the Red-Black Tree removal algorithm (the “repair case”
was case 2b, where the node we labelled “x” had a black sibling and that black sibling
had a red child in the child position further from “x’). That is, explain what we do in
this case and justify that it fixes the problems we have without causing new ones.

If the parent of X is black, and we perform a single rotation on the parent toward X,
and color the new subtree root (S below) and its two children (P and C below) black:

P S
/ 0\ /\

Then we used to have one black node on the way to X, namely, P, but now we encounter
both S and P on the way to X. On the other hand, there are still two black nodes on the
way to L, two black nodes on the way to C’s left child, and two black nodes on the way
to R, since previously, P and S were black and C was red, and now, S and C are both
black. In other words, we add one black node to all paths containing X, but the paths
that do not contain X have the same number of black nodes as before.

Similarly if P is red - same rotation, but S becomes red and P and C (as before) become
black. The same analysis as above is true, but since S is red instead of black, all paths
have one fewer black node than they did in the above paragraph. Nevertheless, we have
added one black node to the paths through X, while not changing the black heights of
the paths that do not travel through X.

CS 225 Second Exam—Sample Exam 2 5 Name:

3. [Analysis — 18 points (9 points each)].

(a) If you want to remove some value from a min-heap — not necessarily the minimum value,
just some random value from the heap — one way you could go about this would be to
decrease the priority of the value so that it rises to the top of the heap —i.e. decrease the
priority of the value so that it is the minimum value in the heap — and then perform a
DeleteMin operation. Assuming you already know where the value you want to remove
is located in the min-heap, what would be the order of growth of the running time of
the above removal procedure? Express your answer in big-O notation and justify your
answer.

To decrease the priority of a value and percolate it to the top would potentially be the
same as the cost of insertion — i.e. the cost of swapping a value upward from the deepest
level of the heap to the root. That cost is O(IgV). And a delete min is also O(lgV).
So total, the cost of this operation will be O(lg V).

CS 225 Second Exam—Sample Exam 2 6 Name:

(b) Explain why it is that the rebalancing work performed by the AVL tree insert or remove
is at most O(lgn) on a tree of height O(lgn). Your answer should be detailed enough to
convince us you know what you are talking about. You don’t need to justify the steps
of the algorithm here — simply indicate what those steps are and their running times —
and indicate that those running times add up to what we claim they add up to.

As you return from the BST recursive calls (after doing BST insert or BST remove), at
each node there are three things that need doing:

i.

ii.

iii.

Recalculate the height of the node, by reading the heights of the two children,
choosing the maximum of those two heights, and adding 1. Given a pointer to a node,
you can access the node’s children in constant time (ptr->left and ptr->right),
and since the height is stored in the node itself, once you have a pointer to a node
you can retrieve its height in constant time (ptr->left->height, for example).
So reading the heights of the two children is constant time, and the rest is just
arithmetic, which is also constant time.

Recalculate the balance of the node — that, again, is just arithmetic on the heights
of the child nodes, and we’ve already established that arithmetic on the heights of
the child nodes can be done in constant time.

If the balance is illegal, perform the appropriate rotation. Comparing the balance
from (2) to 4+2 or -2 is constant, decding what rotation to perform will be constant
(because you are just reading the heights of the children and grandchildren, all of
which are reachable in constant time), and each rotation is a constant time operation,
so no matter which one you do, rotation takes constant time.

All three of those steps are constant time, so we spend a total of constant time at this
node. Since we have O(lgn) levels to move upward through as we return from recursive
calls, the total work will be the number of levels multiplied by the time spend on each
level, which will be O(Ign) times O(1), or O(lgn).

CS 225 Second Exam—Sample Exam 2 7 Name:

4. [List to tree — 15 points|.

You have the following two standard node classes (which are publicly accessible and not
encapsulated in another class):

class ListNode {
public:
int element;
ListNode* next;

};

class TreeNode {
public:
int element;
TreeNodex* left;
TreeNode* right;
+;

Write a function LevelOrderToTree. The function should take as parameter a pointer to
a ListNode, which is the first element of a list that represents the level-order traversal of a
perfect binary tree. This function should reproduce the binary tree from the level-order listing
received as a parameter. That is, LevelOrderToTree should return a TreeNode pointer which
will be the root of a perfect binary tree such that, if a level-order traversal is run on it, it will
yield the same listing as the one received as parameter. If the parameter ListNode pointer
is NULL, the the returned TreeNode pointer should also be NULL.

You have one Queue available to you to use as a local variable, if you wish.

TreeNode* LevelOrderToTree(ListNode* head) {
// your code goes here

SOLUTION ON NEXT PAGE — essentially a modification of level-order traversal.

CS 225 Second Exam—Sample Exam 2 8 Name:

(List to tree, continued)

TreeNode* LevelOrderToTree(ListNode* head) {
// your code goes here

if (head == NULL)
return NULL;
else {
// make root node and put it on queue
Queue<TreeNodex> Q;
TreeNode* root = new TreeNode();
root—->element = head->element;
Q.Enqueue(root) ;
TreeNode* tempInTree; // this will point to whatever node
// we are working with in tree

ListNode* currentInlList = head->next; // since we’ve used
// head value already

while (!Q.IsEmpty()) {

tempInTree = Q.Dequeue();

if (currentInlList == NULL) { // no more children, this is a leaf
tempInTree->left = NULL;
tempInTree->right = NULL;

}

else { // we have children to add to our dequeued node
// add left child
tempInTree->left = new TreeNode();
tempInTree->left->element = currentInlList->element;
Q.Enqueue (tempInTree->left) ;
currentInlList = currentInlList->next;

// add right child

tempInTree->right = new TreeNode();
tempInTree->right->element = currentInlist->element;
Q.Enqueue (tempInTree->right);

currentInlList = currentInlList->next;

CS 225 Second Exam—Sample Exam 2 9 Name:

5. [Counting Leaves — 15 points].

You have the following node class available to you, which is publicly accessible and not
encapsulated in another class:

class TreeNode {
public:
int element;
TreeNode* left;
TreeNode* right;
+;

Write a function CountLeaves that takes as a parameter, a pointer to a TreeNode, and returns
the number of leaves in the tree whose root is that TreeNode. (Hint: Use recursion)

int CountLeaves(TreeNode* ptr) {
// your code goes here

if (ptr == NULL)
return O;

else if ((ptr->left == NULL) && (ptr->right == NULL))
return 1;

else
return CountLeaves(ptr->left) + CountLeaves(ptr->right);

CS 225 Second Exam—Sample Exam 2 10 Name:

(Counting Leaves, continued)

CS 225 Second Exam—Sample Exam 2 11 Name:

CS 225 Second Exam—Sample Exam 2 12 Name:

(scratch paper)

