University of Illinois at Urbana-Champaign
Department of Computer Science

Third Examination

CS 225 Data Structures and Software Principles
Sample Exam 2
75 minutes permitted

Print your name, netID, and lab section day/time neatly in the space provided below; print
your name at the upper right corner of every page.

Name: SOLUTION
NetID:
Lab Section (Day/Time):

e This is a closed book and closed notes exam. In addition, you are not allowed to use any
electronic aides of any kind.

e Do all 5 problems in this booklet. Read each question very carefully.

e You should have 7 sheets total (the cover sheet, plus numbered pages 1-12). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave.

e Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

e Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader
1 12
2 30
3 18
4 15
5 15
Total 90

CS 225 Third Exam—Sample Exam 2 1 Name:

1. [Short Answer — 12 points (4 points each)].

(a)

What two data structures are used to implement Kruskal’s Algorithm?

Heaps and Disjoint Sets

Using big-O notation, indicate the running time of breadth-first search on a graph with
V vertices and no edges.

Draw a directed graph that does not have a legal topological sort.

There are many. Here is the simplest one:

A -—--> B
VAR I

The presence of a cycle means that there is no topological sort. Please note that the
absence of edges means there is a topological sort — in fact, in a graph with no edges,
every possible ordering of the vertices is a topological sort, since no ordering places a
target before its source.

CS 225 Third Exam—Sample Exam 2 2 Name:

2. [Algorithms — 30 points (6 points each)].

(a)

Under what conditions will Dijkstra’s Algorithm be more efficiently implemented using
a heap than with a table, if your graph is implemented using an adjacency list? Justify
your answer.

If your graph implemented with an adjacency list is sparse (i.e. has relatively few edges
out of the number of edges it could have, for that number of vertices), then the heap
implementation will be better. The heap implementation improves the time to search
for a new vertex, but processing each neighbor of a given vertex is more expensive, since
now, if the neighbor’s distance is changed, you don’t just change a table entry (O(1)), but
you also must (potentially) percolate the vertex upward in a heap (O(lgV), to reflect its
lowered priority (i.e. lowered distance, since distance equals priority). The more edges
we have, the more neighbor updates we potentially have, and thus the more times we
run the part of the heap implementation that is more expensive than the corresponding
table implementation of the operation. With enough edges, this cost makes the overall
cost more expensive than the table implementation, despite the faster search time. For
sparse graphs, we don’t have quite so many edges, so the improved search time outweighs
the worsened update costs.

Justify the correctness of the depth-first-search version of our topological sort algorithm.
You don’t need to justify the correctness of depth-first search — just explain why our use
of it to perform topological sort must assign numbers to the vertices in such a way that
the vertices are numbered in topological-sort order.

Our algorithm assigned integers from 1...V in reverse order — that is, V was assigned
first, then V-1, and so on. In addition, our modification of depth-first search assigned a
number to a vertex only after all the neighbors had been explored with depth-first-search
(and thus numbered, since you number a vertex before returning from the depth-first-
search call on that vertex). So, we know that for any vertex, its neighbors all get
numbers before that vertex gets a number. And since we number in reverse order, that
must mean the neighbors of a vertex always get higher numbers than the vertex itself,
since the higher numbers get assigned first and the neighbors receive numbers first. And,
the definition of topological sort is that every vertex appears before its neighbors in the
ordering — so we are done, since now every vertex has a lower number than its neighbors.

CS 225 Third Exam—Sample Exam 2 3 Name:

(¢) In Prim’s Algorithm, we said you choose an edge at each step, from among all edges
that go from set S to set N. What do these two sets represent, and why would it be a
problem to pick an edge that goes between two vertices in S7

Set S is the set of all vertices that have been added to the tree; set N is the set of all
vertices not yet added to the tree. If we chose an edge between two vertices in S, that
means we are connecting two vertices that are both already in the tree — that is, we are
connecting two vertices that are both already connected to each other. This means we
are connecting them a second way — which means we have created a cycle.

(d) Under what conditions would running breadth-first search on an undirected graph, result
in a breadth-first spanning forest of more than one tree, rather than a breadth-first
spanning tree? That is, what kinds of undirected graphs would result in that kind of
answer? Justify your answer.

If the undirected graph is NOT connected, then there will not be a path from the start
vertex, to every other vertex in the graph, and thus we will not be able to reach every
other vertex once we begin searching from our start vertex. This means once we finish
our first tree in the breadth-first search, there will still be unmarked vertices, meaning
we won’t have a single breadth-first spanning tree, but rather, will have to start one or
more additional trees to get those other vertices.

CS 225 Third Exam—Sample Exam 2 4 Name:

(e) For the given graph, run Dijkstra’s algorithm, indicating in the table below the distances
at each vertex at the end of each step (d,), and whether or not the vertex has been marked
known yet at the end of each step (k). The initialization has already been done for you.

(VIdo [ko[do ko[[k [do[o[do |k |do[ho[do[bo]dv]h]
Alcoc|O0]|5|0|5]0]|5 |1 |5 |1]5|1]5|1]5]1
B|o|0|ow|O0O]cw|O0|13]0 (110 (11| 1 |11 1 11| 1
Clox| 012|012 0| 8|0 | 8|1 |8 |1 |8 |1]8]1
D|ico|O0]|2|0]|2 |1 |21 |2 |1]2|1]2|1]2]1
E|of0jO|j1|O|1T]|]O|1|O|1T]O|1]O0]1]|O0]|1
Floo|0]ow|0|ocow|0 || 0|00 [27]0 |27 0 |27 1
G|loo| 0|l |02 0|21 0 (210|210 |21 1 |21 |1

’ - ‘ Start | Step 1 | Step2 | Step 3 | Step 4 | Step5 | Step 6 | Step 7

CS 225 Third Exam—Sample Exam 2 5 Name:

3. [Analysis — 18 points (9 points each)].

(a) What is the order of growth of the running time of finding the complement of a graph
(the graph with the exact same vertices and the exact opposite set of edges), if you have
a graph implemented with an adjaceny matrix? Express your answer in big-O notation
and justify your answer. Assume your adjaceny matrix implementation does have a one-
dimensional array of vertex information, and that your adjacency matrix itself does not
have any “edge info” records, but rather, merely tells you if an edge exists or not.

The complement of a graph implemented by an adjacency matrix, would be obtained
simply by "removing” every edge that does exist and then ”adding” every edge that did
not exist. That is, you flip every 1 in the matrix to 0 and flip every cell that used to
be 0, to 1. Traversing the adjacency array to do this — or to copy the values into a
new adjacency array and then do this operation to that array — will take O(V?) time.
Copying the one-dimensional array of vertex information will take O(V') time. Thus,
the total is O(V?).

CS 225 Third Exam—Sample Exam 2 6 Name:

(b) What is the order of growth of the running time of depth-first search on a graph with V
vertices and E edges? Express your answer in big-O notation and justify your answer.

Each call to depth-first search:

e marks a vertex as “encountered”

e performs constant-time work on each neighbor of that vertex (checking the neighbor
to see if it has been marked)

e performs constant-time work on all unmarked neighbors (starting up a depth-first-
search stackframe for that vertex neighbor, and eventually returning from that call)

And, since you only call depth-first-search on unmarked neighbors, you make one call
to depth-first-search for every vertex. So, there is constant-time marking work for each
vertex, or O(V) total. There is constant-time work inspecting a neighbor and possibly
starting (and later returning from) a depth-first-search call, for each neighbor, or, O(E)
total (since the total number of neighbors equals the total number of targets of departing
edges equals the total number of edges). Thus, the running time is O(V + E).

CS 225 Third Exam—Sample Exam 2 7 Name:

4. [Breadth-First Spanning Tree — 15 points].

You are given the following class:

class TreeNode {
public:
int vertexNumber;
list<TreeNodex*> subtrees; // initially an empty list; the function
// push_back(item) will add item to
// end of list

};

In addition, you are given an adjacency matrix implementation of an unweighted, undirected,
connected graph — such a graph, when you run breadth-first search on it, would produce
a single spanning tree, rather than a spanning forest, no matter which vertex you start
at. In this adjacency matrix implementation, the graph has vertices labelled with indices 0
through n-1, and you are given the value n and a two-dimensional array with n rows and n
columns, both indexed from 0 through n-1. (In C++, a two-dimensional array is accessed
via expressions such as arr[i] [j] where arr is of type int**.) You want to write a method
that takes those two values — the array and the n — as parameters, and returns a pointer
to the root of the breadth-first-spanning-tree of the graph. You are allowed to use as many
Queues as you like, as well as being allowed to create other one-dimensional arrays as well.

TreeNode* BreadthFirstSpanningTree(int** graph, int n) {
// your code goes here
SOLUTION ON NEXT PAGE

CS 225 Third Exam—Sample Exam 2 8 Name:

(Breadth-First Spanning Tree, continued)

TreeNode* BreadthFirstSpanningTree(int** graph, int n) {
Queue<TreeNode*> nodes;
int marks[n];
for (int i = 0; i < n; i++)
marks[i] = O;
TreeNode* root = new TreeNode();

// we will take 0 as our start vertex
root->vertexNumber = 0;

nodes.Enqueue (root) ;

marks[0] = 1;

while (!Q.IsEmpty()) {
TreeNode* temp = Q.Dequeue();
int index = temp->vertexNumber;
for (int col = 0; col < n; col++) {
if graph[index] [col] == 1) {
if (marks([col] == 0) {
TreeNode* latest = new TreeNode();
latest->vertexNumber = col;
nodes.Enqueue(latest);
marks[col] = 1;
(temp->subtrees) .push_back(latest);

3

return root;

CS 225 Third Exam—Sample Exam 2 9 Name:

5. [Converting to undirected - 15 points].

Suppose you have a directed weighted graph of n vertices, where the vertex numbers are 1
through n, and the graph implementation is an adjacency list. The adjacency list is repre-
sented with an Array, indexed from 1 to n, of pointers to the following type:

class EdgeNode {

public:
int index; //index of target vertex
int weight; //weight of edge
EdgeNode* next; // ptr to next edge

3

We want to convert this graph to an undirected weighted graph, by adding for each existent
edge from u to v, the edge in the opposite direction, that is from v to u, with the same weight.
That is, if the directed version had:

You can assume that, initially, if there is an edge <i, j> in the graph, there is not an
edge <j, i> of any weight. Write the function ConvertToUndirected, which receives as a
parameter an Array of EdgeNode pointers — i.e. our adjacency list, as described above — by
reference. The function will perform the conversion discussed above. Do not assume any edge
list is specifically sorted in any way.

void ConvertToUndirected(Array<EdgeNodex>& graph) {
// your code goes here
for (int i = 1; i <= graph.Size(); i++) {
EdgeNode* ptr = graph[i];
while (ptr !'= NULL) {
EdgeNode* travSearch = graph[ptr->index];
while ((travSearch != NULL) && (travSearch->index != i))
travSearch = travSearch->next;
if (travSearch == NULL) {
EdgeNode* temp = new EdgeNode();
temp->index = i;
temp->weight = ptr->weight;
temp->next = graph[ptr->index];
graph[ptr->index] = temp;
3
ptr = ptr->next;

CS 225 Third Exam—Sample Exam 2 10 Name:

(Converting to undirected, continued)

CS 225 Third Exam—Sample Exam 2 11 Name:

CS 225 Third Exam—Sample Exam 2 12 Name:

(scratch paper)

