
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Spring 2009
7p-9p, Tuesday, Feb 24

Name:

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 5 problems total on 18 pages. The last two sheets are scratch paper; you
may detach them while taking the exam, but must turn them in with the exam when you
leave.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

• We will be grading your code by first reading your comments to see if your plan is good,
and then reading the code to make sure it does exactly what the comments promise. In
general, complete and accurate comments will be worth approximately 30% of the points on
any coding problem.

• Please put your name at the top of each page.

Problem Points Score Grader

1 20

2 20

3 17

4 10

5 33

Total 100

1. [Pointers, Parameters, and Miscellany – 20 points].

MC1 (2.5pts)

Consider the following statements:

int *p;
int i;
int k;
i = 37;
k = i;
p = &i;

After these statements, which of the following will change the value of i to 75?

(a) k = 75;

(b) *k = 75;

(c) p = 75;

(d) *p = 75;

(e) Two or more of the answers will change i to 75.

MC2 (2.5pts)

Consider the following statements:

int i = 1;
int k = 2;
int * p1;
int * p2;
p1 = &i;
p2 = &k;
p1 = p2;
*p1 = 3;
*p2 = 4;
cout << i << endl;

Which of the following is printed by the output statement (assume cout works)?

(a) 1

(b) 2

(c) 3

(d) 4

(e) None of these. The code does not compile.

MC3 (2.5pts)

Consider the following C++ statements:

#include <iostream>
using namespace std;

void increment1(int x) { x = x + 1; }
void increment2(int * x) { *(x) = *x + 1; }
void increment3(int & x) { x = x + 1; }

int main() {
int x = 1;
increment1(x);
increment2(&x);
increment3(x);
cout << x << endl;
return 0;

}

What is the printed out when this code is compiled and run?

(a) 1

(b) 2

(c) 3

(d) 4

(e) This code does not compile.

MC4 (2.5pts)

Which of the following is a correct way to declare and initialize a dynamic array of length
max, each element of which is a List whose parameterized type is a sphere?

(a) List<sphere> * myList = new List<sphere>[max];

(b) sphere ** myList = new sphere *[max];

(c) List<sphere> myList[max];

(d) More than one of (a), (b), (c), are correct.

(e) None of (a), (b), (c), are correct.

MC 5 (5 pts)

Find the errors in the following code. Select all that apply, if any.

#include <iostream>
using namespace std;

int * myFun(const int & a) {

int * c = new int(a);
int b = *c;
return &b;

}

int main() {

int n = 8;

cout << *(myFun(n)) << endl;

return 0;
}

(a) type mismatch

(b) memory leak

(c) invalid return value

(d) NULL pointer dereference

(e) violation of const

MC 6 (5pts)

Which of the following functions are typically implemented in an iterator class? Check all
that apply, if any.

(a) operator*

(b) operator()

(c) operator++

(d) operator=

(e) begin()

2. [The Big Three – 20 points]. Consider the following partial class definition:

class picRosters
{
private:

BMP ** courses;
int * enrollments;
int numCourses;

// some helper functions

public:
// constructors and destructor

// operator= declaration

// lots of public member functions
};

The courses structure is a dynamically allocated array of dynamically allocated arrays of
BMPs. The enrollments structure is a dynamically allocated array of ints, whose values are
the lengths of the elements of the courses structure. In other words, for any i, courses[i]
is an array of length enrollments[i].

Both courses and enrollments arrays have numCourses elements. You can assume that
numCourses is greater than zero, and that every element of enrollments is greater than 0.

In this question you will help us implement the overloaded assignment operator for the
picRosters class.

You may assume that all pointers are valid. That is, they are either NULL or they point to
an object of the specified type. Furthermore, you may assume that the BMP class has an
appropriately defined “Big Three” (destructor, copy constructor, and assignment operator).

You will write your answers on the following pages. To grade the coding portions of this
problem, we will first read your comments to make sure you intend to do the right thing,
and then we’ll check your code to make sure it does what your comments say it should. As
a result, be sure your comments are coherent, useful, and reflective of your approach to the
problem. Comments will be worth up to 1/3 of the total points for any part of the problem.
Adding comments to our code skeletons can get you partial credit, but it’s not required.

problem 2 continued...

(a) (10 points) We have written a partial implementation for a helper member function
called copy that makes the current object have the same value as the parameter orig.
copy assumes that the current object has no dynamic memory associated with it. Note
that this function would be called by the picRosters copy constructor. Your task is to
fill in the blanks so as to complete the copy function.

void _____________::copy(________________ orig):numCourses(____________)
{

courses = new ____________[numCourses];

enrollments = ___________________;

for(int i = 0; i < _______________; ++i)
{

enrollments[i] = _________________;

courses[i] = ____________________;

for(int j = 0; j < enrollments[i]; ++j)

_________________[j] = ______________________;
}

}

(b) (5 points) Write a helper member function void clear() that frees all memory used by
an instance of picRosters. Note that this function would be called by the picRosters
destructor.

(c) (5 points) We have tried to write the overloaded assignment operator for the picRosters
class using the helper functions you wrote in parts (a) and (b). Circle the errors in our
function, and write the correct code on the right, very clearly.

picRosters::operator=(picRosters & rhs)
{

if(*this != rhs)
{

copy(rhs);

clear();
}

return this;
}

3. [Miscellaneous C++ – 17 points].

(a) (8 points) We have seen 4 different uses for the symbol “:”. For each, give a short
example and explain using appropriate C++ vocabulary.

i. (::)

ii. (:)

iii. (:)

iv. (:)

(b) (4 points) We have seen two different uses of the keyword const. For each, give a short
(one line) code example and briefly explain the behavior.

i. example 1:

ii. example 2:

(c) (5 points) There are 3 characterizing components of object oriented programming among
the list of concepts below. Circle them.

abstract data types inheritance
classes memory management

code re-use parameterized types
dynamic memory allocation polymorphism

encapsulation top-down design

4. [Inheritance – 10 points].

In each part of this problem we will be presenting you with a pair of classes and some code
snippets and asking you about the result of compiling and running the code. Your task will
be to tell us explicitly what happens, and why. If there is an error, you should reason about
whether the error occurs at compile time, or run time. If there is output, you should tell us
what the output is. If the result depends on some other factors, explain them. Assume that
the standard iostream is available (cout and cin work).

(a) (3 points) Class definitions:

class Rect{ class Sq: public Rect {
public: public:
Rect(int w,int h):wid(w),ht(h){} Sq(int side):Rect(side,side){}

private: int area(){return wid * wid;}
int wid, ht;
}; };

Code snippet:

Sq d(5);
cout << d.area << endl;

Result:

(b) (3 points) Class definitions:

class vehicle{ class bus: public vehicle {
public: public:
void showCol(){cout << "gold";} void showCol(){cout << "silver";}

}; };

Code snippet:

vehicle * v;
int x;

// initialize x

if (x%2 == 0) // x is even
v = new vehicle;

else
v = new bus;

v->showCol();
delete v;

Result:

(c) (2 points)

Class definitions:

class artifact{ class basket: public artifact {

public: public:
virtual void showMed() virtual void showMed()
{cout << "gold";} {cout << "clay";}

}; };

Code snippet:

artifact * a;
int x;

// initialize x

if (x%2 == 0) // x is even
a = new artifact;

else
a = new basket;

a->showMed();
delete a;

Result:

(d) (2 points) Class definitions:

class athlete{ class hoopStar: public athlete {

public: public:
virtual void showOff() = 0; virtual void showOff()

{cout << "w00t!";}
}; };

Code snippet:

athlete * a;
int x;

// initialize x

if (x%2 == 0) // x is even
a = new athlete;

else
a = new hoopStar;

a->showOff();
delete a;

Result:

5. [Lists – 33 points].

Suppose you have implemented a List using a singly linked list with sentinels at the head and
tail, and a tail pointer as in the figure below. In this problem you will implement some of the
member functions for this list class.

!" #" $" %" !"

&'()"
*(+,"

Here is a partial List class definition:

template <class LIT>
class List{
public:

List(const LIT & e);
List(const List & orig);
~List();
void insert(int loc, const LIT & e);
void removeLast();
// lots more member functions

private:
listNode * head;
listNode * tail;
int size; // the number of data elements in the list

listNode * Find(int k, listNode * curr);
void removeAll(listNode * curr);

struct listNode {
LIT data;
listNode * next;
listNode(LIT e): data(e), next(NULL) {} ;
listNode(): next(NULL) {} ;

};
};

The Find private helper function returns a pointer to the listNode that is k nodes beyond
the input listNode *. For example, Find(2, head) returns a pointer to the node containing
the value 8 in the example above. You may use this helper function anywhere you’d like.

(a) (5 points) Write the default (no argument) constructor for the List class. To make this
easy for us to grade, place the function prototype on the first line, and then write the
rest of your code between the brackets. Our solution required 3 lines of code. (Note, the
next pointer for the tail sentinel should be NULL.)

{

}

(b) (5 points) We’ve written part of the code for the member function insert below. Your
task is to complete the function. insert puts a new listNode containing element e into
the list at position loc. For example, in the example on the previous page, insert(3, 2)
would place a listnode containing the value 2 into the list between the nodes containing
8 and 3.

template <class LIT>
void List<LIT>::insert(int loc, LIT e)
{

listNode * t = new ______________(e);

listNode * p = Find(________, _________);

// write more code here

}

(c) (5 points) What is the asymptotic, worst case, running time for the best possible imple-
mentation of the member function removeLast that removes the last data element from
the list? Explain your answer.

(d) (5 points) Explain why the copy constructor (declared in the List class definition) has
a constant reference parameter. Your answer should explain both the const and the &.

(e) (3 points) Write a single line of code that invokes the default constructor you wrote in
part (a).

(f) In this part of the problem we are going to focus on writing the destructor for the List
class. In particular, we’ll write a recursive helper function that frees the memory and
call that function from within the destructor.

i. (5 points) Write a recursive private helper function called removeAll that frees all
memory allocated for the list, including the sentinel nodes. We’ve given you the
skeleton of the function, you just have to fill it in. (We realize that we are guiding
you to a particular, elegant solution. If you’d like to give a complete alternative
solution, you may do so on the back of the previous page for 3 points.)

template <class LIT>
void List<LIT>::removeAll(listNode * curr)
{

if (_________________)
{

removeAll(_____________________);

______________________________;
}

}

ii. (5 points) Now write the destructor for the List class as it would appear in List.cpp.
Your solution should call removeAll appropriately.

scratch paper 1

scratch paper 2

