
University of Illinois at Urbana-Champaign
Department of Computer Science

First Examination
CS 225 Data Structures and Software Principles

Summer 2005
3:00pm – 4:15pm Tuesday, July 5

Name: SOLUTIONS

NetID:

Lab Section (Day/Time):

• This is a closed book and closed notes exam. No electronic aids are allowed, either.

• You should have 7 sheets total (the cover sheet, plus numbered pages 1-13). The last sheet
is scratch paper; you may detach it while taking the exam, but must turn it in with the
exam when you leave. The back of the second-to-last page contains some class and function
declarations you have seen before; you can use this sheet as reference while taking the exam.

• Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

• Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem Points Score Grader

1 20

2 15

3 20

4 20

5 15

Total 90

CS 225 First Exam—Summer 2005 1 Name:

1. [Classes in C++ – 20 points].

Consider the following code, which contains a class representing an exam for a course of at
most 20 students. The code below would appear in the header file for this class, which we’ll
assume is named examdata.h.

#ifndef EXAMDATA_225_H
#define EXAMDATA_225_H

#include "string.h" // we will assume the string.h file here
// is the same one you’ve seen on the MPs

class ExamData {
public:

// Assigns the internal String to be equal to the
// parameter String, and sets this collection of
// exam scores to be of size zero
ExamData(String theName);

// If there are less than 20 exam scores so far,
// add the parameter score in the next available cell,
// (thus incrementing the number of scores by 1) and
// return true. Otherwise, do not change the member variables
// at all, and return false.
bool addValue(double examScore);

private:

String examName;
int numScoresSoFar;
double theValues[20];

};

#endif

On the next page, write the examdata.cpp file for this class. The comments on the two
functions above indicate what needs to be done by those two functions. You do not need to
have any comments in your answer.

CS 225 First Exam—Summer 2005 2 Name:

(Classes in C++, continued)

#include "examdata.h"

ExamData::ExamData(String theName)
{

examName = theName;
numScoresSoFar = 0;

}

bool ExamData::addValue(double examScore)
{

if (numScoresSoFar < 20)
{

theValues[numScoresSoFar] = examScore;
numScoresSoFar++;
return true;

}
else

return false;
}

CS 225 First Exam—Summer 2005 3 Name:

2. [Pointers and References – 15 points].

Consider the following class:

class Circle
{
public:

// initializes member variables to parameter values
Circle(double theRadius, double theX, double theY);

// calculates and returns area of circle
double area();

// moves the center of the circle by the first parameter’s
// value in the positive X direction and by the second
// parameter’s value in the positive Y direction.
void translate(int xMove, int yMove);

private:

double radius; // radius of the circle
double xCenter; // x-coordinate of the center of the circle
double yCenter; // y-coordinate of the center of the circle

};

CS 225 First Exam—Summer 2005 4 Name:

(a) Consider the following code:

Circle* cPtr;

Given the variable cPtr above, write additional code that will (1) create a local Circle
object with radius 3.1, x-coordinate 5.6, and y-coordinate 2.3, (2) assign the pointer
above to point to that Circle object, and (3) using the pointer, obtain the area of the
circle and print it out.

Circle myLocal(3.1, 5.6, 2.3);
cPtr = &myLocal;
cout << cPtr->area() << endl;

(b) Imagine you have the following function:

double Foo(Circle const & theParam)
{

Circle c2(theParam);
double theArea = theParam.area();
return (theArea + c2.area());

}

The above function will not compile with the given Circle class. Explain what change
you would need to make to the Circle class so that the above code and the Circle class
would both compile correctly.

Since theParam is const, you cannot call area() on theParam in the second line. In
order to make the above code work correctly, after area() in both the .h and .cpp file,
you must say const. That is,

double area() const;

CS 225 First Exam—Summer 2005 5 Name:

3. [The Big Three – 20 points].

Consider the following code:

// this would be in the .h file
class Foo {

public:
Foo(); // no-argument constructor

// As part of the question on the next page, you’ll add a
// function declaration here. Other public functions (functions we
// don’t care about for this problem) would go here too.

Foo const & operator=(Foo const & origVal);

private:
String labels[5];
Array<String>* names;
Array<int>* values;
Array<String*> namesPtr;

};

Assume the member functions assign the above member variables so that:

• every array is of size 5, indexed from 0 through 4

• all pointers are pointing to legitimate objects, not to NULL or to garbage memory

Add a correctly-written assignment operator to the class Foo. The declaration should go in
the code on this page, and the definition should appear on the next page in the way in which
you’d write it in the .cpp file. Do not worry about #include macros or any other such things;
just write the assignment operator function.

CS 225 First Exam—Summer 2005 6 Name:

(The Big Three, continued)

Foo const & Foo::operator=(Foo const & origVal)
{

if (this != &origVal)
{

delete names;
delete values;
for (int i = 0; i <= 4; i++)

delete namesPtr[i];

for (int i = 0; i <= 4; i++)
{

labels[i] = origVal.labels[i];
namesPtr[i] = new String(*((origVal.namesPtr)[i]));

}

names = new Array<String>(*(origVal.names));
values = new Array<int>(*(origVal.values));

}
return *this;

}

CS 225 First Exam—Summer 2005 7 Name:

4. [Generic Programming – 20 points].

(a) You want to write a class whose instances are function objects. The class should be
named XCharsInRange, and the operator() for the class has a return value of type
bool and has three parameters. The first two parameters are of type int, and the third
parameter is of type String. You can assume the first parameter is less than or equal
to the second parameter. The function will return true if, in the parameter String, the
total number of times the ’X’ and ’x’ characters appear, is between the two integers
inclusive, return true; otherwise, return false.
For example, if the first two arguments to the function were 5 and 7, then the function
returns true if the ’X’ and ’x’ characters appear between 5 and 7 times, inclusive. in the
parameter String, total. If the String had two ’X’ characters and five ’x’ characters,
for example, then the total is seven and so you would return true.
(It is okay to write the definition for this class right into the class declaration itself, i.e.
you don’t need to divide things up into a .h and .cpp, though you can if you want to.)

class XCharsInRange {
public:

bool operator()(int first, int second, String foo);
};

bool XCharsInRange::operator()(int first, int second, String foo)
{

int total = 0;
for (int i = 0; i < foo.length(); i++)

if ((foo[i] == ’X’) || (foo[i] == ’x’))
total++;

if ((total >= first) && (total <= second))
return true;

else
return false;

}

CS 225 First Exam—Summer 2005 8 Name:

(b) You want to write a generic function called IsSorted. This function has two template
types, Iterator and Comparer. We will assume that instances of type Comparer are
function objects that take two values of the type the Iterator type points to (i.e., two
values of the type you’d get when you dereference something of type Iterator), and
returns true if the first value is “less than” the second value (by some definition of
“less than”) and returns false otherwise. The generic function accepts two iterators
as parameters, defining a range [first, last) as we have discussed before, and also
has a third parameter, of the Comparer type discussed above. The generic function
returns true if the values in the range are sorted from lowest to highest according to
the Comparer object, and returns false otherwise.
For example, if the range held integers, and the function object defined “less than” using
the integer operator<, and our range was:

first last
5 6 9 13 18 28 33 43 53 61 79 49

then the function should return true, since for each pair of consecutive values, the first
is less than the second, according to the given comparison function. (The 49 at the
end does not count since the value is not actually in the range). Assume the iterators
implement the full iterator interface we have discussed in lecture, section, and the sample
code.

template <typename Iterator, typename Comparer>
bool IsSorted(Iterator first, Iterator last, Comparer isLessThan) {

// your code goes here

while (first != last) {
Iterator temp = first;
temp++;
if (temp == last) // range is size 1

return true;
else { // range of real values is at least two

if (isLessThan(*first, *temp))
first++;

else
return false;

}
}
return true;

}

CS 225 First Exam—Summer 2005 9 Name:

5. [Inheritance – 15 points].

Consider the following class:

class Window {
public:

// initializes member variables to be equal to parameter values
Window(String theTitle, int theWidth, int theHeight);

virtual ~Window() { }

// prints out
// This window has title T, width W, and height H
// where T, W, and H are the values of the member variables
virtual void print();

String getTitle(); // returns title of window
int getWidth(); // returns width of window
int getHeight(); // returns height of window

private:

String title;
int width, height;

};

You want to write a class DialogWindow that is a derived class of Window, and whose speci-
fication is as follows:

• There is one additional member variable, a String to hold a message to the user

• There is a constructor that has four parameters, which hold the title, the width, the
height, and the message string of the window, respectively. The constructor should
initialize the object’s member variables to be equal to the parameter values.

• There is a method print() which has no parameters, returns nothing, and which prints:

This window tells the user D while having title T, width W, and height H

where D is the dialog message stored in one of this class’s member variables, and T, W,
and H are the title, width, and height stored in the other member variables.

CS 225 First Exam—Summer 2005 10 Name:

(Inheritance, continued)

class DialogWindow : public Window {
private:

String message;
public:

DialogWindow(String theTitle, int theWidth, int theHeight, String theMessage) :
Window(theTitle, theWidth, theHeight), message(theMessage)

{
// no code needed here

}

virtual void print() {
cout << "This window tells the user " << message << " while having";
cout << " title " << getTitle() << ", width " << getWidth();
cout << ", and height " << getHeight() << endl;

}
};

CS 225 First Exam—Summer 2005 11 Name:

class String
// here are the member function declarations for the String class
String(); // initializes to empty string
String(char const * initString); // initializes to "literal" parameter
String(String const & origVal); // copy constructor
~String(); // destructor
String const & operator=(String const & origVal); // assignment op
char operator[](int index) const; // accesses char at parameter index
char & operator[](int index); // accesses char at parameter index
String substring(int startIndex, int substringLength) const;

// piece of this beginning at startIndex; substringLength chars long
String concat(String const & secondString) const; // appends param to copy

// of this String
int length() const; // length of string
// we’ve left the six relational operators (operator==, operator<,
// etc.) out; you don’t need them.
friend std::ostream & operator<<(std::ostream & Out,

String const & outputString); // prints

template <typename Etype>
class Array

// Here are the member function declarations for the Array class;
// we’ve left the declarations for the iterators and iterator
// support functions (begin(), end(), etc.) out; you don’t need them.
Array(); // size 0 array, indiced 0 through -1
Array(int low, int high); // indices low through high
Array(Array<Etype> const & origVal); // copy constructor
~Array(); // destructor
Array<Etype> const & operator=(Array<Etype> const & origVal);//assignment op
Etype const & operator[](int index) const; // accesses cell at param index

Etype & operator[](int index); // accesses cell at param index
void initialize(Etype const & initElement); // inits all cells to param
void setBounds(int theLow, int theHigh); // changes bounds of array,
int size() const; // returns number of cells in array
int lower() const; // returns lowest index
int upper() const; // returns upper index

CS 225 First Exam—Summer 2005 12 Name:

(scratch paper, page 1)

CS 225 First Exam—Summer 2005 13 Name:

(scratch paper, page 2)

