University of Illinois at Urbana-Champaign
Department of Computer Science

Third Examination

CS 225 Data Structures and Software Principles
Summer 2005
3:00pm — 4:15pm Wednesday, July 27

Name: SOLUTIONS
NetID:
Lab Section (Day/Time):

This is a closed book and closed notes exam. No electronic aids are allowed, either.

You should have 6 sheets total (the cover sheet, plus numbered pages 1-11). The last sheet is
scratch paper; you may detach it while taking the exam, but must turn it in with the exam
when you leave. can use this sheet as reference while taking the exam.

Unless otherwise stated in a problem, assume the best possible design of a particular imple-
mentation is being used.

Unless the problem specifically says otherwise, (1) assume the code compiles, and thus any
compiler error is an exam typo (though hopefully there are not any typos), and (2) assume
you are NOT allowed to write any helper methods to help solve the problem, nor are you
allowed to use additional arrays, lists, or other collection data structures unless we have said
you can.

Problem | Points | Score | Grader
1 15
2 15
3 15
4 15
5 20
6 10
Total 90

CS 225 Third Exam—Summer 2005 1 Name:

1. [AVL Trees — 15 points|.

You are given the AVLTreeNode class shown on page 8 of the exam. You want to write a
function doubleRight that has one parameter and returns nothing. The parameter will be
of type reference-to-pointer-to-AVLTreeNode. You can assume this parameter points to the
root of a subtree for which it is possible to perform a double right rotation. The function
should perform that rotation — including fixing the heights of whatever nodes will need their
heights fixed. You can assume all heights in all nodes, are correct prior to the double rotation
operation.

void doubleRight (AVLTreeNode * & ptr) {
// your code goes here

TreeNode* firstRot = ptr->left;

TreeNode* temp = firstRot->right;
firstRot->right = temp->left;
temp->left = firstRot;

firstRot = temp;

// fix height

ptr->left = temp->right;
temp->right = ptr;

ptr = temp;

// fix height

CS 225 Third Exam—Summer 2005 2 Name:

2. [Tries — 15 points].

You are given the TrieNode class shown on page 8 of the exam (as well as the companion
TrieListNode class on that same page). This is the node class for a de la Briandais tree.

You want to write a function doubleStart that has one parameter, of type pointer-to-
TrieNode, and which returns an int. Your function should return the number of TrieNodes
which are the starting nodes of a double letter pattern — that is, nodes for which a there is
a subtree at a given letter, which also contains that letter. For example, if the ’c’ subtree
existed for some node mynode, and the root node of that subtree, also had a ’c’ subtree
that existed, then mynode qualifies as one of the nodes you should count. If a node starts
multiple double-letter patterns — for example, if the node has a ’>c’ subtree which itself has a
¢’ subtree, and it has an ’s’ subtree which itself has an ’>s’ subtree — you would still only
count the node once.

int doubleStart(TrieNode * ptr) {
// your code goes here

CS 225 Third Exam—Summer 2005 3 Name:

3. [Node Creation — 15 points].

You have the DSNode class shown on page 8 of the exam, as well as the Array class shown
on page 9 of the exam. You want to write a function makeTrees, which has one parameter,
an Array<int> named sets. This array will be indexed from 1 through sets.size(), rep-
resenting a collection of disjoint sets implemented with union-by-size. You want to return a
value of type Array<DSNodex*> (you are allowed to create this one new array in your function,
but no other additional new arrays besides that one), which will implement the exact same
collection of disjoint sets as the parameter array — only using actual uptree nodes rather than
simply array cells. Your returned array should be indexed from 1 through sets.size(), and
each cell should point to a DSNode containing that cell’s index as the node key. Those DSNode
objects should have their variables initialized in such a way that they exactly implement the
same uptrees represented by the parameter array (i.e. do not compress any paths).

Array<DSNode*> makeTrees(Array<int> sets) {
// your code goes here

Array<DSNode*> dynamicSets(1l, sets.size());
for (int i = 1; i <= dynamicSets.size(); i++)

dynamicSets[i] = new DSNode(i);

for (int i = 1; i <= sets.size(); i++)
dynamicSets[i] .parent = dynamicSets[sets[i]];

return dynamicSets;

CS 225 Third Exam—Summer 2005 4 Name:

4. [Complete Trees — 15 points].

You want to write a method countLeftFirst that has one parameter, an Array<int> value
(see page 9 for the Array class) named tree, indexed from 1 to tree.size(). This array is
the array implementation of a complete tree of size tree.size(). You want to return the
number of values in the array for which the value’s “left child” is both less than the value’s
“right child” and also less than the value itself. Any value that does not have both a left and
right child, would automatically not be counted in this total.

int countLeftFirst(Array<int> tree) {
// your code goes here

int total = 0;
for (int i = 1; i <= tree.size()/2; i++)
if ((treel[2 * i] < treel[i]) && (tree[2 * i] < tree[2 * i + 1]))
total++;

return total;

CS 225 Third Exam—Summer 2005 5 Name:

5. [Red-Black Trees — 20 points].

(a) You have the values 1 through 15, inserted into a red-black tree of all black nodes, that
also happens to be a perfect tree. If you remove 1 from the tree, which nodes (if any) will
now be red? Briefly explain why. (You do not need to justify that parts of the red-black
tree removal algorithm are correct; it’s enough to say, “in this case, the algorithm says
to do this”.)

The tree has to look like this to begin with:

8

/ 0\

4 12
/\ / \
2 6 10 14
/N/N /NN
1357911 13 15

So when you remove 1, pointer to 1 becomes pointer to “x”. Now, you have case 3: x’s
sibling, which is 3, is black with black children. So you handle this by coloring 3 red and
relabelling 2 as “x”. But 2’s sibling — which is 6 — is also black with black children...so
you have case 3 again. You color 6 red and relabel 4 as “x”. Same idea there: 4’s sibling
— which is 12 — is black with black children. So color 12 red, and relabel 8 as “x”. Now

(1)

x” is the root, so you exit the loop.
So you have three nodes that are red: 3, 6, and 12.

CS 225 Third Exam—Summer 2005 6 Name:

(b) You have three values in a red-black tree — a root with two children, with the two children
being red. What is the maxium number of rotations that the next insertion could result
in? Justify your answer.

You will not have any rotations. Your next insertion has to be a leaf, so it has to be
a child of one of the root’s two children. A new node could not possibly go anywhere
else, according to the BST insert algorithm. No matter which of the root’s two children
is the parent of our new node, our new node will be red, and it’s parent and sibling
will both be red. So this is the “red uncle” case of the insert algorithm; we solve this
by coloring the new node’s parent and parent’s sibling black, the grandparent red, and
relabelling the grandparent as "x”. So now we have a red root with two black children,
one of which has a red leaf as a child. The last thing we do is “leave the loop” and color
the root black again...and then we are done. So no rotations are needed at all.

CS 225 Third Exam—Summer 2005 7 Name:

6. [Analysis — 10 points].

You want to create a two-dimensional sparse array. That is, you want an interface that lets
you pass in a “row” index and “column” index and, using those indices, gives you the unique
value associated with that pair of indices. However, behind the scenes, we will not necessarily
implement this with a two-dimensional array.

Specifically, we are deciding between two possible implementations. One of our options is a
linked list whose nodes each hold a row index and an array of integers. In this case, to look
up a value, we first search the linked list for the desired row, and then, given the array at
that linked list node, use our column index as the array index we want — the value in that
cell is what we are looking for.

The second option is a red-black tree whose nodes each hold a row index and an AVL tree.
Searching the red-black tree for the row index will give us the relevant AVL tree. The AVL
tree will hold two indices in each node — a column index and the value associated with that
column for the given row we looked up in the red-black tree. So to obtain our value, we then
search the AVL tree for the column index.

If our goal is to have the fastest worst-case time we can for obtaining a value, given the value’s
row and colum, then which of these two implementations is preferable? Justify your answer
convincingly. You can assume any running time we have stated in class about linked lists,
arrays, red-black trees, or AVL trees.

THE ANSWER: For our first option, array lookup is done by searching the linked list for a
row value (this would be O(n)) and then once we find it, access the array there to get the
column we want (which would be O(1)). So, we have O(n) + O(1) = O(n).

Our second option is to search a red-black tree for a row value (this would be O(logn)) and
then once we find it, access the AVL tree there and search it to get the column we want (this
would also be O(logn)). So we have O(logn) + O(logn) = O(logn).

So the second way is the better of the two, since in order to find the value you need to acces
both structures, and that total time will be better in the second implementation.

CS 225 Third Exam—Summer 2005 8 Name:

class AVLTreeNode { // needed for problem 1
public:

int element;

int height;

AVLTreeNodex* left;

AVLTreeNode* right;
3

class TrieNode { // needed for problem 2

public:
TrieListNode* head; // see below
int level;

};

class TrieListNode // needed for class above which is needed for problem 2
public:

char letter;

TrieNode* subtree;

TrieListNode* next;

};

class DSNode { // needed for problem 3

public:
int key;
int size; // for non-root nodes, this value can be anything you like
DSNode* parent;

DSNode (int value) { key = value; size = 1; parent = NULL; }

CS 225 Third Exam—Summer 2005 9 Name:

template <typename Etype>
class Array { // needed for problems 3 and 4

// Here are the member function declarations for the Array class;

// we’ve left the declarations for the variables, iterators and iterator

// support functions (begin(), end(), etc.) out; you don’t need them.
Array(); // size O array, indiced O through -1

Array(int low, int high); // indices low through high

Array (Array<Etype> const & origVal); // copy constructor

“Array(); // destructor

Array<Etype> const & operator=(Array<Etype> const & origVal);//assignment op
Etype const & operator[](int index) const; // accesses cell at param index

Etype & operator[](int index); // accesses cell at param index

void initialize(Etype const & initElement); // inits all cells to param
void setBounds(int thelLow, int theHigh); // changes bounds of array,
int size() const; // returns number of cells in array

int lower() const; // returns lowest index

int upper() const; // returns upper index

CS 225 Third Exam—Summer 2005 10 Name:

(scratch paper, page 1)

CS 225 Third Exam—Summer 2005 11 Name:

(scratch paper, page 2)

