(CS225 : Data Structures and Software Engineering
Arrays and Strings

Jason Zych



(©2001, 2000, 1999 Jason Zych



Chapter 1

Arrays and Strings

We will now turn our attention to the usage of arrays and strings in C++. Unlike in Java, where
arrays, string, and memory usage are only slightly-related topics, in C++ there is a very strong
relationship between the ideas of pointers, arrays, and strings. The actual usage of these ideas
tends to not be too different from Java, though, so first we will examine how to declare and use
arrays in C++, and then we will turn our attention to the actual implementation of arrays in
memory and how this implemention idea is related to the memory ideas we mentioned during
the discussion of pointers.

1.1 Using Arrays in C++4

As you should recall from Java, an array is a collection of cells of the same type which are
numbered with consecutive integers and referred to by a single name. To access individual cells
of the array, you use the array name and the particular number (called an index) of the particular
cell you want within that array.

An array was declared in Java as follows:

int[] x;
X = new int[6];

The first line created a variable x which was a reference to an array. Just as all objects of
user-defined types in Java were allocated with new and referred to by references, likewise arrays
were also allocated with new and referred to by references — i.e. they were treated just like
user-defined types, instead of treated as built-in types. So, the second line above, then, was the
creation of the actual array object using new and the assigning of the array reference x to refer
to that new array object.

The first array cell was always numbered 0, and the index values (the cell numbers) proceeded
upward consecutively from there. So, in Java, an array of size 6, like the one we declared above,
would have 6 cells, and those cells would have index values 0 through 5.

Finally, you accessed these cells by using the array name and the cell index together. The
notation that was used was to first list the array name, followed by a pair of brackets ([1). Inside
the brackets, you placed the index of the cell you wanted. So, you could then use statements in
your code such as the following:



x[3] =7; // assigns the integer 7 to cell 3 of array x

int valueTwo = x[2]; // reads cell 2 of array x and stores
//  the value in the variable valueTwo

int total = x[0] + x[5]; // adds the values of the first and last
//  cells of the array and stores the
// sum in the variable total.

Now, the reason we have chosen to review these Java ideas before proceeding to C++ is
because arrays in C+-+ work almost exactly the same way! In fact, the actual usage in code
statements is identical. It is the array declarations that are slightly different.

Recall from our pointer discussion that unlike in Java, where objects of user-defined types
can only be created using new and referred to by references, in C++ you can create objects of
user-defined types either as local variables or as dynamic objects. Likewise, in Java arrays must
be created using new and referred to by references, whereas in C++ you can create arrays locally
(in which case their existence ends when their scope ends —i.e. when you leave the function they
were declared in or destroy the class they are a member of), or you can create them dynamically
(in which case the memory for the array comes from the heap, not the stack, thus ensuring that
the array will continue to exist until you explicitly delete it).

For now, we will focus mostly on local arrays, i.e. stack-based arrays. We will mention how
to create dynamic arrays right now as well, but don’t worry about that too much — just make a
mental note of the idea and move on. We’ll spend the next section discussing stack-based arrays
in detail, and once we have completed that discussion, the things we need to say about dynamic
arrays will make a lot more sense and we’ll go back and explore dynamic arrays in more detail
then.

To declare an array locally in C++, you don’t need two lines or the use of the new function
as with Java. To create an array called x of 6 cells indexed 0 through 5, you would use the
following line of code:

int x[6];

That’s it! — just the element type, followed by the array name and then the bracket pair with
the array size inside. The array is used the same way it is used in Java — that is, the three
examples of array usage that we had above, which we said came from Java code, could just as
easily have come from C++ code. You use the array name, followed by the brackets with the
index inside, and that gives you an array cell that you can either write to or read from, just as
in those three examples above. Also, just as in Java, an array of size n is automatically indexed
from 0 through n — 1, and there is no way to choose to start at, say, 1 or 2 instead. So, the only
real difference between C++ arrays and Java arrays in is the way those arrays are first declared.

It is also possible, as we stated above, to declare arrays dynamically in C++4. Although we’re
going to postpone an involved discussion of that topic for just a bit, we will at least introduce
how to declare such arrays right now. The declaration of a dynamic array is quite similar to the
declaration of arrays in Java. First you need to create a (reference in Java, pointer in C++)
to hold the address of the new array, and then you use new to create the array and send the
address of that array to the (reference or pointer).



int* arrayPtr;
arrayPtr = new int[6];

Then, you would again use the array just as you did in Java, with statements such as x[3]=7;
or whatever else you wanted to do.

So, given that information, you now know how to declare and use arrays in C++. The details
shouldn’t be too hard to remember, because except for the declaration of the arrays, everything
is exactly the same as it was in Java, and so if you remember how to handle arrays in Java, then
you mostly remember how to handle them in C++ as well. Just remember the ways in which
the array declaration syntax is different and you are all set.

1.2 Arrays in stack memory

(NOTE: During the course of this discussion, the phrase “array cell” or “array location” will
be used to refer to the abstract idea of a cell in the array, and the phrase “memory cell” or
“memory location” will be used to refer to a physical location in memory. If the type stored by
the array only needs one memory cell (such as with an int), then we will say that the given
array cell is stored in the given memory cell. However, if the type stored by the array needs
more than one memory cell for each object of that type (such as with Coord, which needed four
cells), then we will say that it is that group of memory cells that is needed to store the array
cell. For example, we might say that an array of Coord objects needs four memory cells for each
cell in the array.)

In addition to being indexed with consecutive integers, when arrays are implemented in
memory they must use consecutive memory locations. That is, you cannot split an array inside
memory, and use some memory cells from one portion of memory to store part of the array and
some memory cells from some other portion of memory to store the other part of the array. All
the memory cells used to implement an array must be in one consecutive sequence. This is due
to the way that arrays are compiled and translated to machine code, not just in C++ but in
programming languages in general. So, the discussion that follows is not just a discussion of
arrays in C++, but how arrays in any language are implemented on the machine-code level.

Assume we have made the following array declaration:

int x[6];

This array consists of 6 cells, indexed with the integers 0 through 5. Since the type of the array
elements is int, each array location will need one memory cell (since in our example machine,
an integer takes up one cell, i.e. four bytes). So, our array = will need 6 consecutive memory
cells.



40 a0
a4 a4
a48 a8
ab2 ab2
ab6 ab6
a0 a0
ab4 ab4
ab8 ab8
ar2 ar2

(@ (b)

Figure 1.1: (a) Our memory diagram. (b) The allocated array needs six consecutive memory
cells.

Now, conceptually, each of these cells has a name. The first cell, at a44, is named x[0]. The
second cell, at a48, is named x[1]. And so on.

a40
ad4 (X[0])
48 (X[1])
ab2 (X[2])
ab6 (X[3])
a60 (X[4])
a64 (X[3])
a68
ar2

Figure 1.2: The six array cells have names — but only in the conceptual sense (which is why the
names are in parenthesis).

However, imagine how this would be for larger arrays, such as an array of size 10000. If the
compiler had to assign an individual name (x[0], x[1], etc.) to each of 10000 memory cells,
that could be very time consuming and also would take up a lot of memory in the compiler. In
addition, we may very well have many arrays of this size, making the problem even worse.

This problem is solved by the fact that the compiler can calculate the address of an array
cell, provided it has, (1) the starting address of the array, (2) the index of the cell we want, and
(3) the number of bytes needed to store an object of the type in question. It makes a decision
on (1) when you declare your array, you tell it the index for (2), and the type held in the array
determines (3), so the compiler should have all of that information.

6



So how is this calculation done? Well, let the starting address of an array be z. If we know
how many memory cells are needed to store one object of the given type, we can simply multiply
that by four to get the number of bytes needed to store an object of the given type (recall that
each memory cell is composed of four bytes, which is why our memory cells are addressed with
multiples of four).

So, let the number of bytes needed to store one object of the relevant type be L. If the index
of the array cell we want is ¢, then we can find the memory address of the start of this array cell
with the following formula:

starting address of x[i] = x + L * i

That is, you take the starting address of the array, and then move downward in memory L * ¢
bytes. (Remember, each memory cell in our memory pictures is composed of four bytes.) If you
examine the diagrams above, you can see this equation in action. For the very first array cell,
i will be 0. In this case, the memory cell we want is the very first cell used for the array (i.e.
the cell addressed by a44), since the first cell of the array will naturally be located at the start
of the array and thus the address of the first cell of the array will be the starting address of the
entire array. If we look at the equation and fill in the appropriate values, we see that it works
out.

X + L * 0
add + 4 * 0
=a44 + 0

= ad4

starting address of x[0]

If, on the other hand, we want, say, the array cell with index 3, well, that will be the fourth
array cell, since the array cells with indices 0, 1, and 2 come before it. Therefore, it is necessary
to skip over the first three array cells so that we can reach the fourth array cell. Each of these
array cells we want to skip over takes up L bytes, because that is the size of the type. So, since
we need L bytes to implement each array cell, if we want to skip over three of them we will
be skipping over 3 * L bytes. In the case of our example array x which holds six integers, each
integer takes one memory cell, i.e. four bytes. So, L will be 4 in our example array. It follows
that if we want the starting address of the fourth array cell (i.e. the cell with index 3), we should
start at the beginning of the array and then skip down 12 bytes, since 3 x 4bytes = 12bytes. This
corresponds with the formula we have above.

x+L*xi // here i = 3
a44 + 4 bytes *x 3

a44 + 12 bytes

= ab6

starting address of x[3]

And, if you look back at the memory diagrams, you can see that if we want to reach the array
cell x[3], the address of that location is indeed 12 greater than the address of the start of the
array. We started at the beginning of the array, and then skipped over three memory cells, i.e.
12 bytes, to reach x[3].



starting address

""""" T

..plus3* 4 byteﬁ..y

a48 vV

ab2 v

a6 (x[3]) ...gives a5,
a0 whichis

a64 address of x[3]
ab8

ar2

Figure 1.3: Calculation of the address of the cell with index 3.

If our array x had been holding Coord objects instead of integers, the calculation would work
the same way. A Coord object took up four memory cells, which is 16 bytes. So, for the type
Coord, L is 16.

Coord c[6];

Now, if we want to access c[2], the calculation works as follows:

c+ L *i // here i = 2
a44 + 16 bytes * 2

a44 + 32 bytes

= a76

starting address of c[2]

And, in the diagram on the next page, you can see that c[2] does indeed start at a76.
So, whenever you use an array, the compiler always translates your

arrayName [index]
code to the internal calculation
arrayName + index * type_size_in_bytes

and then once that multiplication is done, you have the starting address of the cell you want.
That is how arrays are implemented!

1.3 The relationship between pointers and arrays

In C++, due to the pointer construct, there is a very close relationship between pointers and
arrays. This is because pointers are able to hold memory addresses. Since, as we saw in the
previous section, an array cell location is simply described as an offset from the starting location
of the array, we can use a pointer to store the starting address of an array and add an offset
to the pointer’s address value to get a different array location. In this manner we can actually

8



starting address
7 N '
“ | ) (0]) :
a52 !
N :
..plus2* 16 bytesY
a60 1
| ) (1]) :
a68 !
a2 | m !
LN
aré - i ...gives ar6
a80 which is
54 (c2l)  addressof ¢[2]
a8 [ —
a92

Figure 1.4: Calculation of the address of the cell with index 2.

calculate array cell locations naturally in our code just as they are calculated by the system
after being translated from the more common x[i] type of format. This general idea of the
calculation of address offsets in code — an idea known as pointer arithmetic — isn’t used too
often in C+4++ anymore, but it is still helpful to know, firstly for the sake of gaining a better
understanding of memory issues, and secondly so that our usage of dynamic arrays will make
more sense.

So, first consider our example array x from the last section, the array which held six integers.
One question that might come to mind is, “what is x?”. Meaning, we know that x[0], x[1],
etc. refer to specific memory locations, but what about just plain x? Is x the name of a memory
location?

The answer is slightly confusing. x is indeed a name, but there is no variable x. That is, while
variables have names, values, and memory locations, our x is a name, and it refers to a value
(namely a44, the starting address of the array), but it does not have a location in memory, or
at least, not one that can be written to. The name x holds a constant value, cannot be changed,
and for our purposes can be thought of as nothing more than a name in the compiler symbol
table (see the pointer packet, section 2) and nothing more.

In other words, x is not an lvalue. The term “lvalue” more or less means “left-hand side
value”, or “something you can write a value to in an assignment.” The idea of “something that
is in memory” is a more accurate description, because if you can write to it, then it must be
stored in memory. For example, if we have the code

int a, b;
then you can write statements such as

b = 2;



a = b;
a =5;
2 = b; // yes, this is an error

In the first statement, you are writing 2 into the location named by b. So, since b is being
written into, it is an lvalue. This term came about because assignment statements are always
organized so that the location being written into is placed on the left (“lvalue” is shorter than
“left-hand-side value”). In the second statement, we are writing the value of b into a. Here, b
is not being written into; instead, we are reading it rather than writing into it. This statement
shows that a is an lvalue, and the third statement shows this as well. The idea is that variables
are sometimes written into, and sometimes they are on the right-hand side instead, and are read
from instead of written into. This is only true for variables, however. Values, such as 2, 3.4, or
‘e’, cannot be written into and thus are not lvalues. This can be seen in the fourth statement
above, which makes no sense and is not allowed.

So, in usage, we say that a and b are lvalues, because they can be used on the left-hand side
of an assignment. They aren’t always used that way; the usage of b in second statement above
is one example where an lvalue would not be used on the left-hand side of an assignment. But,
since you could use it that way, b (as in, just b, just considering b alone without placing it in
any specific statement) is considered an lvalue. So, the expressions that are not lvalues are those
that do not refer to any specific memory cells, and thus could never be written to (you can’t
write to 2.3 or ‘e’, for example).

The point of this discussion is that x, our array name, is not an lvalue — it cannot be written
to in the same way that a variable can (and thus we are not going to include it in our memory
diagrams). This is good, because we don’t want to assign to it. The last two lines in the following
segment of code are somewhat non-sensical:

int x[6];

int n;

x[0] = 5;

x[1] = 2;

x = a4d8; // not allowed!
X = &n; // not allowed!

We know that x holds an address — the starting address of the array. And yet, to assign to x
makes no sense — we don’t want to suddenly change the starting address of the array (which
would require copying all the array elements, i.e. moving the contiguous chunk of memory being
used by the array to the new locationm), even if we could. And even if we wanted to do that, we
really don’t want to change that starting location to that of an already existing variable, as we
are doing in the very last assignment above — because that would mean writing over the values
that are already at that memory location.

So, you should think of the array name (the name on its own, not with the brackets and an
index attached) as simply a marker, a stand-in for the starting address of the array, just as the
symbol “2” is a stand-in for the bit-string representing “2” in the machine arithmetic. You can
read from x and get the starting address of the array, but you can’t write to x.

However, since you can read from x, you can write the following code:

int* startPtr;
startPtr = x;

10



This code will first create the integer pointer startPtr, and then it will assign to this pointer
the address represented by x, that is, the starting address of the array. In other words, the
above code accomplishes exactly the same thing as writing;:

int* startPtr;

startPtr = &(x[0]);

// the above line could also have been written as
// startPtr = &x[0];

// i.e. the parenthesis are not needed here

In either case, we end up with an integer pointer variable startPtr which holds a44, the starting
address of our array.

ad0
ad4 (x[0])
al8 (x[1])
a52 (x[2]) -3-.y
ad6 (X31) /" (holds starting
ab0 (x[4]) address of array,
264 (x[5] ) ad4, but holds it
in acompiler table,
a68 44 - --- gartPtr not memory)
ar2

Figure 1.5: Pointer variable stored in memory.

Now, here is where it gets interesting. If you add an integer and a pointer, the result is
another address. Specifically, since the pointer has a type it points to (for example, integer
pointers point to integers — i.e. hold the addresses of integers), the integer is automatically
multiplied by the size of that pointed-to type, and then the resultant product is read as a total
number of bytes and is added to the address.

Huh? :-)

An example will explain it better. Consider the following line of code, which comes after the
declaration and initialization of startPtr that we had above:

int n;
n = *(startPtr + 3);
What happens in that second line? Well, startPtr is a pointer to an integer. So, when you

try and add the 3 to this pointer, the pointer reads the 3 as “3 * sizeO fIntegerInBytes”. And
since an integer needs 4 bytes in our example machine, the expression

11



startPtr + 3
is effectly read as

startPtr + (3 * 4 bytes)
This leads to

n = *(startPtr + 3);

// really means...

n = x(startPtr + 3 * 4 bytes);

// really means

n = *(startPtr + 12 bytes);

// since startPtr holds a44, this really means
n = *(the address ab56)

// dereferencing...

n = the integer held in the memory cell ab6
That is, the line
n = x(startPtr + 3);
is ezactly equivalent to
n = x[3];
Likewise,
(startPtr + 3) is equivalent to &x[3]
and
*(startPtr + 3) = 5;

is equivalent to

x[3] = 5;

Basically, adding an integer to a pointer is the equivalent of putting the brackets after the
pointer and placing the integer inside. This also means that you can, in fact, put the brackets
after startPtr as well. That is, once startPtr has been assigned the value of x, you can use
startPtr in place of x.

12



startPtr[3] = 5;
cout << startPtr[2];
total = startPtr[1] + startPtr[5];

So, the name of an array simply is a “stand-in” for the address of that array, and so once you
have another pointer storing that array’s address, you can use the name of that pointer variable
in place of the name of the array.

1.4 Strings in stack memory

In C++4, a built-in string is simply an array of type char. The only odd thing you need to
know is that strings end with a NULL character, to signify that they have indeed ended. (Many
string functions traverse down the char array until a NULL character is read, indicating you’ve
reached the end of the string. This allows string functions to operate without needing to know
the size of the string in advance.) This NULL character is represented with a backslash and 0
(\0). And of course, just like any other char value, such as ‘e’ or ‘M’ or ‘7’, if you want to
specifically refer to the NULL character in your code, you need to enclose it in quotes (‘\0?).
So, if we wanted to store the string “CS225” in C++, here is one way we could do it:

char stringA[6]; // creates an array indexed from O to 5
stringA[0] = ‘C’;

stringA[1] = ‘S’;

stringA[2] = ‘27;

stringA[3] = ‘27;

stringA[4] = ‘57;

stringA[5] = ‘\0’; // do not forget this character!

If you forget to add the NULL character to the end, later processing may not work, since a string
function might read right off the end of the array and into other memory. This will eventually
result in memory corruption, or memory access errors (segmentation faults or bus errors), or
both. The NULL character acts as a “stop sign”, letting functions know they have reached the
end of the string.

You can imagine that trying to assign large strings to arrays of type char in this manner
would be tedious and error-prone. So, there is a short-hand for initializing the char array.
(There are actually other array initialization shorthands as well, that work in general. You
can read about these things in a C++ manual, but it’s a minor detail and so we won’t worry
about covering it here.) The following code will accomplish for stringB what the above code
accomplishes for stringA:

char stringB[] = "CS225";
When you use the line above, the system encounters it and thinks,

1. Oops, the user has not filled in the size of this array. Oh, wait! It’s not a problem because
the array is being initialized on this exact same line, and so I can determine the size of
the array from that.

2. Okay, there is an expression in double-quotes here; by definition, that is a string of char-
acters. There are five of them, and so since I also need room for the NULL character, the
total space the array stringB needs is space for six char values.

13



3. So, now that the memory has been set aside for those six char cells, I will copy the C, S,
2, 2, and 5 into the first five of those cells, and then the NULL character into the sixth
cell. Done!

Or, in other words, that one line is a second way of initializing a string. You can specifically
allocate all the char cells you need and fill them in one-by-one, or else just use the single line
above, which indicates only that you want a char array and what string you want to store in it.
Given those two pieces of information, the system can figure out how much space is needed and
can do the assignment of characters to character cells, so you might as well let the machine do
it and save yourself some typing.

1.5 Arrays and strings in dynamic memory

Finally, it is time to discuss dynamic arrays. Once you understand section 3.3, it is really not
too difficult, simply because you are already used to the idea of some pointer variable serving
in place of the array name. That is, you have already seen that the following code is perfectly
legal.

int x[6];
int* startPtr = x;
startPtr[2] = 1; // equivalent of ‘‘x[2] = 1;7’

So, you have seen that you can access a local array by using not its name, but rather a pointer
that holds the array’s starting address. Now, imagine a dynamically-allocated array. It doesn’t
have a name! So, there is no “real name” to refer to it by. The only way you can use a dynamic
array is to assign a pointer to hold its starting address, and then that pointer serves as its name,
just like startPtr is serving as an alternate name on the third line of the code snippet just
above.

That is, when we perform our dynamic array declaration (as seen in section 3.1):

int* arrayPtr;
arrayPtr = new int[6];

all that happens is that arrayPtr is a local variable holding the address of the dynamic array,
and the set of contiguous memory cells are still allocated for the array but are allocated from
the heap instead of from the stack. Otherwise, there is no difference. So, essentially it is similar
to the use of startPtr in section 3.3, except in this case the pointer and the address it holds
are nowhere near each other, rather than being right next to each other as in the local memory
example. The pointer variable arrayPtr, like the pointer variable startPtr, is in local memory.
But the chunk of contiguous memory cells whose starting address is stored in arrayPtr is located
in the heap, whereas for startPtr it is located in the stack. But, that is the only difference
between the two. The usage is exactly the same, and works because we can substitute arrayPtr
for the (in this case non-existant) real name of the array just as we could substitute startPtr
for x in local memory.

arrayPtr[2] = 4;
arrayPtr[0] = O;
cout << arrayPtr[2];

14



However, there is one thing you need to need to be aware of, which is that when memory
is allocated in this manner, using new and the brackets together, then when you delete that
memory, you need brackets there as well.

arrayPtr[1] = 6;

delete[] arrayPtr; // deletes dynamic array; arrayPtr still
//  holds address of former dynamic array

arrayPtr = NULL; // arrayPtr no longer holds its old value

These basic rules apply to strings as well — strings are just a specific case. When dealing
with strings, since they are arrays of characters, the type that can hold the address of a dynamic
string is a character pointer, or char*.

char* finalExample;
finalExample = new char[5];
finalExample[0] = ’B’;
finalExample[1] = ’y’;
delete[] finalExample;

Note the brackets at the end of delete, which are necessary because the allocation used brackets
as well, to create many objects in an array arrangement. When new uses [], delete must use
[1. When new does not, delete should not.

There is one final thing to mention. Traditionally in C (the predecessor language of C++),
the user dealt with strings of characters by passing character pointers (char* variables) around
in memory. Likewise, the array syntax we have described above was frequently used as well.
However, unlike in Java, there is no bounds-checking in C or C++. So, if your string or array
has five cells and you try and access cell number 10, the best that you can hope for is that the
program simply crashes, without the helpful “ArrayOutOfBoundsException” notice that you
had in Java. (You can build code into your program to give you that notice, but it does not
come automatically.) The worst that can happen is that the system actually *does* allow you
to read the cell 10 cells away from the starting location of the array — even though that memory
location isn’t actually part of the array. By reading that cell, you are reading garbabe memory
and corrupting your data!

So, when writing code that used arrays or strings, one had to be very careful not to write
code that accessed a non-existent cell. As a result, in C++, arrays and char*-based strings
are generally safely tucked away inside an Array or String class which does do things like
range checking. The “real” array or string gets placed among the member data (i.e. instance
variables) of the class, and the interface is designed to give you “array-like” access to that data.
The resultant Array or String class — called a wrapper class because it wraps around the “real”
array or string — can then be used in a manner far more similar to your use of other objects in
the system. In the second discussion section, the TAs will go over the Array and String classes
that we use in this course, and in addition to other important details about the code, they will
explain how the “real” array or string gets used as member data by the wrapper class.

15



16



