(CS225 : Data Structures and Software Engineering
Constructors and the Big Three

Jason Zych

(©2001, 1999, 1997 Jason Zych

Chapter 1

Constructors and the Big Three

1.1 The default constructor

The constructor is a function that specifies how an object should be initialized upon creation.
A constructor has the same name as the corresponding class, but never has a return type. For
example, for class Coord, the constructor would be called Coord () as well. The constructor can
have parameters, and it can also be overloaded, meaning you can have multiple constructors,
all with the same name, just with differing parameter lists. Constructors can initialize values
within the object that you are creating and perform other “object start-up” tasks as well.

A constructor without any parameters is called a default constructor. Below is an example of
a default constructor for the Coord class. (Note that we are putting the definition of the functions
directly into the class declaration here, rather than writing them in a separate implementation
file as we discussed in lecture 1. Technically, it is okay to do this; however, it is not generally
the way to do things, for reasons we’re not going to discuss quite yet. That is why we told you
to separate the declaration and definition in lecture 1. The only reason we are not doing so here
is to save space on the paper; if we were providing example code files, we would separate the
two in those code files, and you should do so as well.)

class Coord {
public:
Coord() {xCoord = 0.0; yCoord = 0.0;}
void Initialize(double x, double y) {xCoord = x; yCoord = y;}
void Print() { cout << "(" << xCoord << "," << yCoord << ")" << endl;}
private:
double xCoord, yCoord;
};

To use the constructor, you could have a statement such as:
Coord* cPtr = new Coord();

The command new Coord() allocates space for a new Coord object in memory, as we have
seen. But, since Coord() is a constructor, this command doesn’t just allocate space — it also
runs the code in the constructor and initializes xCoord and yCoord to 0.0. Recall that back
in the pointer packet we mentioned that one of the tasks of the new command was to make

3

the appropriate constructor call. Above, you now see what was meant by that. When you
dynamically allocate an object using new, you first have the memory set aside for the object,
then the constructor is called to initialize that memory, and finally, the address of the dynamic
object is returned by the new command.

You could also have said:

Coord ci1, c2;

and for each of the objects c1 and c2, the memory is set aside on the function stack for the
object, and then the constructor gets called and both member data of the object are initialized
to 0.0. (Note that there are not parenthesis after c1 or c2; we will discuss why shortly.)

The default constructor is generally used to initialize the object to the “default state” or
“start state”. Usually, this means that you want to have variables set to something, or else
you could have garbage in their memory locations, but you also don’t currently have anything
specific you want stored there. So, integers generally get set to 0, pointers get set to NULL,
and so on. But that is just the common situation; certainly, your own specific class might have
better values to set the variables to by default, and if so, then those values are what you should
use. It all depends on what is appropriate for your specific class.

1.2 Overloading functions

Function overloading (or method overloading, as it was called in Java) is the term for defining
more than one function with the same name. If you think of a function prototype:

void foo(int a, int b);

the function is uniquely defined by the name and parameter list. Certainly, you have seen
functions with different names but the same parameter list. For example, you might pass an
integer to a function that squares its parameter (ex. int square(int x)), or pass an integer
to a function that returns the corresponding fibonacci number (ex. int fib(int x)), or pass
an integer to a function that draws a circle with that radius (ex. void DrawCircle(int x)).
Those would be three different functions that each would have a single integer as a parameter;
they would be distinguished by the fact that they all had different names.

Similarly, two functions can have the same name, as long as the parameter lists are different.
In that way, even though the functions can’t be distinguished by name, they can be distinguished
by parameter list. If two functions had the same name and the same parameter list, then it
would never be clear which one you were trying to call, and so the compiler would indicate that
you have an error. But as long as either the name or the parameter list is different, you are
okay.

Why on earth would you want two functions with the same name? Well, imagine you have
written a function called add, that adds two integers:

int add(int a, int b)
{

return (a+b);

Now, you may find in your code that there is a use for a function that adds four integers as
well. Adding four integers together using just the above function would take three calls to the
function. It would be easier if there was a function available to do it in one. But what should
we call it? One good name is add, but add is already taken.

The beauty of overloading is that it doesn’t matter that add is already taken. We can use it
again anyway, as long as we have a different parameter list :

int add(int a, int b, int c, int d)
{
return (at+b+c+d);

}

When your program gets compiled, and you have a statement somewhere like:
add(5,6,7,8);

the compiler sees that the argument list has four integers, and tries to find a function called
add with a parameter list of four integers. It will first see the add with two integers, and will
decide that that is not the function it wants. It will then see the add with four integers in the
parameter list, and realize that that is the function it does want. And therefore compilation
works correctly. If you had not written the add with four parameters, and then tried to call it,
you would of course get a compiler error.

The key idea is ambiguity — or rather, avoiding it. When the parameter lists of two functions
are different, there’s no ambiguity about which function you are trying to call, so if the names
happen to be the same, that’s fine.

1.3 Overloading the constructor

So, now consider the situation where we create a Coord object, but where we know exactly what
values we want the Coord to hold, even before we create the object itself.

If you want to be able to set the data to actual user-chosen values to start with, you can
overload the constructor with a function that takes arguments:

class Coord {
public:
Coord() {xCoord = 0.0; yCoord = 0.0;}
Coord(double x, double y) {xCoord = x; yCoord = y;}
void Initialize(double x, double y) {xCoord = x; yCoord = y;}
void Print() { cout << " (" << xCoord << "," << yCoord << ")" << endl;}
private:
double xCoord, yCoord;
};

Note the second constructor (with a different parameter list!) in the class now. You could
use this constructor to initialize local objects as follows:

Coord firstVal(0.0, 4,5);
Coord secondVal(5.3, 3.2);

or to initialize dynanmic objects as follows:
Coord* cPtr = new Coord(7.2, 5.2);

When the constructor is called in any of the three lines above, the member data of the object
gets initialized to the user-chosen values (the arguments to the above constructor calls), rather
than zero as is the case with the default constructor. The fact that we had two arguments of
type double rather than no arguments at all made it clear we wanted the second constructor
rather than the first. In general, you could have many different constructors for a class; the
constructor you want to use is always clear from the arguments you are using on the declaration
or allocation line.

However, there is one small syntax quirk you need to be familiar with. Note that for both
the default constructor and the constructor with parameters, you have parenthesis after “new
Coord” but with the default constructor you only have parenthesis when you are allocating
the object dynamically and not when you are allocating the object locally. (We pointed this
out above, remember?) The rule for almost every constructor call — whether for a dynamic or
local object — is that you’ll have parenthesis, possibly empty, which contain the arguments you
are trying to send into the constructor. In the special case of a local object and the default
constructor, however, you do not use parenthesis. That is, your declaration looks like this:

Coord c4;
and not like this:
Coord c4(); // note the parenthesis -- incorrect!

Why is this? Why don’t we have parenthesis in the special case of local declaration and default
constructor even though we have them for all the other cases? Well, the reason is that if we
were to use the parenthesis, the compiler could also view this as the declaration of a function
called c4 that takes no parameters and has a return type of Coord. We do not have this problem
when using “new”, since lines using “new” clearly are not function declarations. We also don’t
have this problem when declarating local variables using constructors with parameters. This is
because function parameter lists require types to appear on the parameter lists, so if you write

Coord foo(int x, int y);

then you are dealing with a function declaration for a function called “foo”, but the line of code
Coord f00(0.0, 4.5);

has no types involved — there are arguments instead of type/variable pairs — and thus is clearly
not a function declaration but rather is a function call (specifically, a constructor call), and thus
a variable declaration for foo. As long as you have even one item in the parenthesis, then you
can tell whether your line of code is a variable declaration or a function declaration based on
whether that item in the parenthesis is a type/variable pair, or a function argument of some
kind. But if the parenthesis are empty, you don’t know if they are empty because there are no
parameters, or if they are empty instead because there are no arguments. Thus, it is unclear
whether it is a function declaration, or if it is instead a variable declaration using a default
constructor call.

The language C++ needed to be compatible with code written in the language C, and since
it was already established in C that the syntax:

6

Coord c4();

was the form for a function declaration, when C++ was designed, that was kept as the form
for a function declaration, and local variable declarations using the default constructor became
a special case where the parenthesis were left off, so as not to confuse such a declaration with a
function declaration. So, the case of using the default constructor to initialize a local variable
is a special case — one where the empty constructor parenthesis are understood to be there,
but you don’t actually type them in so as not to confuse the compiler and make it think you
are attempting a function declaration. If you do type those parenthesis anyway, the confusion
the compiler will face is similar to the confusion you will cause by forgetting your semicolon at
the end of the class declaration. So, if you do happen to get some really strange errors, this is
another one of those odd errors that might be the cause and something you should check your
code for (just like you should check your code to see if you forgot the semicolon at the end of a
class).

1.4 Default constructor issues

Part of the reason the no-argument constructor is also called the default constructor is that you
are sometimes given this constructor by default. If you do not explicitly write any constructors
of your own into your code for a particular class, then the compiler will give you the no-argument
constructor automatically. It won’t magically appear in your source code, of course — but the
compiler will write it into the compiled code. The definition of this constructor will be empty,
as if you had done this yourself:

Coord: :Coord ()
{

// no code here

}

So, nothing will actually be done by the default constructor in this case; it’s only included by
the compiler so that there is some constructor to call. Every variable declaration and object
allocation of a user-defined type will call a constructor somehow, so if there was no constructor
for a class, the class would be useless since you could never create any objects of that class.
Therefore, the compiler at least provides you with this constructor if you have not provided any
of your own.

However, as soon as you write any constructor, the compiler places all responsibility on you
and does not provide a default constructor. Therefore, you can’t write only

Coord(double x, double y);
into your class and hope to also have
Coord() ;

available to you. If you want the default constructor available to you, you either need to write
it in yourself (just like you need to write in any other constructor if you need it), or else write in
no constructors, so that the compiler will give you the default constructor automatically. (Note
this is the same rule that you had to deal with in Java, so it shouldn’t be something entirely
new.)

The default constructor is used very frequently. Part of the reason it is called the “default”
constructor is that it is called by default in various places. For example, if you create an array
of six Coord objects:

Coord myArray[6];

then each of those six objects is initialized using the default constructor. You don’t have any
way to select the use of a different constructor there, and if you don’t have a default constructor
available, the array declaration won’t work (i.e. won’t compile — since the rule is to use a
default constructor and the compiler can’t find one). Because of “hidden” uses of the default
constructor like that, it is usually a very good idea for a class to have a default constructor — and
therefore if you write any constructor at all for a class (thus preventing the compiler from giving
you a default constructor automatically), you should make sure to write a default constructor
for the class (thus ensuring that the class has a default constructor even though the compiler
didn’t provide it one by default). You can always later overwrite any values assigned by the
default constructor (as we shall soon see), but at the very least, you want the default constructor
available to provide the first assignment of values, in all the places where that default constructor
is the choice that the language either chooses for you by default, or worse, forces upon you (as
in the array example above).

1.5 The copy constructor

There are many different constructors you could write for a class, because there are many
different parameter lists you might find useful for initializing your object. A constructor that
takes as a parameter another object of the same class is called a copy constructor, because you
are initializing your object to be a copy of the object you passed in as a parameter.

class Coord {
public:
Coord() {xCoord = 0.0; yCoord = 0.0;}
Coord(const Coord& origVal);
void Initialize(double x, double y) {xCoord = x; yCoord = y;}
void Print() { cout << "(" << xCoord << "," << yCoord << ")" << endl;}
private:
double xCoord, yCoord;
};

The second constructor in the code above is our copy constructor. (We’ve left out the definition
code and provided only the declaration, as we are really supposed to do in the first place. We’ll
provide the definition in a moment.) All we have done here is overloaded the constructor, just
as we did before. The only thing that has changed is the specific parameter list. The second
line of code below uses this constructor.

Coord ci1; // uses default constructor
Coord c2(cl1); // uses copy constructor; c2 is initialized
// to be a copy of ci

Note the actual definition code of the copy constructor, which appears below:

8

Coord: :Coord(const Coord& origVal)
{

xCoord = origVal.xCoord;
yCoord = origVal.yCoord;

}

The fact that xCoord and yCoord are private variables does not prevent us from writing code like
the code above. Just as in Java, when a member variable of a class is private, that only means
it cannot be directly accessed outside of its class. However, within its class — i.e. within the
member functions of its class — it can be used freely. So, above, we not only have access to the
xCoord and yCoord of the new object we are initializing; we also have access to the xCoord and
yCoord of the object we passed in as an argument (i.e. the object called “origVal”). Within
the member functions of the class Coord, we have access to any private variables of any Coord
object. And in general, for any class, within the member functions of that class we have access
to any private variables of any object of that class. This is intentional — if we did not, we could
not write things like a copy constructor because we could never read the variables of some other
identical-type object in order to copy them.

In addition to being used explicitly as in the code above, there are also some “hidden uses”
for the copy constructor — times when the compiler puts a copy constructor call into the compiled
code without you being aware of it. (We will discuss some of these situations in just a moment.)
For that reason, the copy constructor is very important, and therefore the compiler will always
provide a copy constructor if you don’t write one. This is not like the default constructor, where
sometimes you get one from the compiler, under certain conditions. Quite the contrary — in
the case of the copy constructor, you will always be given one by default if you don’t write one
yourself. This means that every class will have a copy constructor available, since the only way
to keep the compiler from giving you one for that class is to write one yourself, and in that case,
the class still has a copy constructor.

If the copy constructor is given to you automatically by the compiler, what does it do? Well,
by default, the copy constructor performs what is known as a memberwise copy — that is, values
are copied data member by data member. If the data member is a primitive type, then it’s just
a simple pattern of bits, and the compiler will just copy that bit pattern. This is known as a
bitwise copy. If the data member is of a user-defined type, then the compiler assumes the copy
constructor for that user-defined type is correctly written and will correctly copy the object,
and uses that copy constructor to copy the user-defined type.

For example, if we had a class String that was designed to store text strings, then imagine
if this were the data member section of our Coord class:

class Coord {

public:
// whatever you want here
private:
double xCoord, yCoord;
String s;

};

In this case, the default version of the copy constructor (i.e. the one given to you by the compiler)
will perform bitwise copies of the xCoord and yCoord variables, since they are of type double,

9

a primitive type. So, the xCoord for your new object will just hold the same bit pattern — and
thus the same value — as the xCoord of the object you are copying from. As far as the String
variable s goes, well, we have no idea what kind of data members are used to implememt a
String object, since those would be private and we can’t look at the private data of some
other class. However, the compiler assumes that whatever is going on in the String class, the
copy constructor for the String class correctly handles it. So, the variable s in the new object
will be initialized by calling the String copy constructor, and passing in as an argument to that
String copy constructor the variable s of the Coord object you are copying from. Thus, when
all of that is done, we have accurately copied xCoord, yCoord, and s from one Coord object —
the one that was passed as an argument to the copy constructor — and into the other Coord
object — the one which the copy constructor was actually invoked to initialize.

If the compiler-provided version does all that for us, why would we ever want to actually
write a copy constructor of our own? The code we wrote earlier:

Coord: :Coord(const Coord& origVal)
{

xCoord = origVal.xCoord;
yCoord = origVal.yCoord;

}

is exactly what the default version of the copy constructor would have done, so in the above case,
we didn’t need to write that code. We could have just relied on the compiler-supplied default,
which would have done exactly what we did ourselves. And in fact, many times we will indeed
be able to just rely on the default version of the copy constructor and not bother with it writing
it ourselves. There are situations where we need to supply our own copy constructor — situations
where the default behavior is not what we want — but we will first discuss destructors, and then
we will return to copy constructors and discuss the situations where the default behavior of the
copy constructor is not sufficient for our needs.

For the moment, though, we have one more thing to discuss before we move on. We had
said that there were times when the compiler used the copy constructor even though we hadn’t
explicitly written a call to that constructor. One such example is when we pass an object
using pass-by-value. Remember that when we use pass-by-value, the system makes a copy of
the argument we pass in, and operates on that copy. Well, as our objects get more complex,
it will not necessarily be automatically clear to the system how that copy should be made.
Hence, the copy constructor is used. Whenever you pass an argument of a user-defined type
by value, the way the system manages to make a correct copy of that argument is by calling
the copy constructor and letting the copy constructor correctly initialize the copy, using the
original argument as the parameter it reads the information from. Similarly, if you return by
value (rather than by reference), the copy constructor is also used to make that copy.

This is why you are required to pass your argument to the copy constructor by reference,
and not by value. Remember that this was our declaration for the copy constructor:

Coord(const Coord& origVal);

We can certainly require the address of origVal — that is, pass a Coord* — if we want to, but
such a constructor would not be the copy constructor, since it takes a Coord pointer, not a
Coord object. It would just be some other ordinary constructor. The copy constructor needs a
Coord object as a parameter, but you must pass that object by reference, not by value. This

10

is because it is the copy constructor that defines how pass-by-value works!!!! If you were able
to pass your argument by value to the copy constructor, you would basically be following these
instructions:

Instructions for calling the copy constructor:
First, since you are passing by value, you must make a copy
of your argument, and then you can run the copy constructor
definition code on that copy. To initialize the copy of your
argument, you use the copy constructor -- your newly-created
memory on the stack space is what you are trying to initialize,
and whatever you passed by value is the argument you’ll pass to
the copy constructor to make this copy. See ‘‘Instructions for
calling the copy constructor’’ to learn how to do this. Then,
once you have correctly initialized the copy of your argument,
you can take this newly-initialized copy, and run the copy
constructor definition code on it.

That is, you’d end up with an endless recursive definition with no base case, and as you know,
recursion without a base case is not good. Since it is the copy constructor that defines how
copies should be made, the copy constructor itself cannot require that a copy be made in order
to work correctly. (This is a tough issue; think about for a bit if it doesn’t make sense, and
perhaps try and trace a few such calls out on paper.) Therefore, you cannot pass by value to the
copy constructor; you must use a reference variable as the copy constructor parameter. (A good
compiler should detect and prevent your use of a by-value parameter in the copy constructor.)

1.6 Destructors

Another special function a class can have is a destructor. The destructor, like all constructors,
has no return type. In addition, the destructor never has parameters, and it has a specific name
— the name of the class, preceeded by a tilde.

// From now on, we’ll only list functions relevant to our
// discussion, and Initialize and Print aren’t relevant to
// our discussion, so away they go.
class Coord {
public:
Coord() ;
Coord(double x, double y);
Coord(const Coord& origVal);
~“Coord();
private:
double xCoord, yCoord;
};

The destructor declaration is seen in the code above. Since you can never have parameters
in a destructor, that means it’s not possible to overload a destructor, and thus a class can have
only one destructor, never more than that.

11

Destructors, as the name indicates, are responsible for helping to destroy an object. Unlike
constructors, destructors are not called directly. Rather, there is an implicit call to an object’s
destructor when the object goes out of scope. In addition, the destructor is called implicitly
when the delete keyword is called on a pointer. In that case, before destroying the object that
is being pointed to, the computer calls the object’s destructor. So in other words, whenever an
object — local or dynamic — is about to be destroyed (i.e. have its memory given back to the
system), its destructor is called first.

The job of the destructor is to clean up any resources that the object requested during its
lifetime. In CS225, the only resource an object might request will be dynamic memory of its
own, and in the following pages, that will be the kind of resource we will use in our examples.
In general, however, an object might also request other system resources (for example, a lock
on a certain piece of data) whose discussion is beyond the scope of this course. An object could
require many different system resources over its lifetime, and when the object gets destroyed,
any of those resources that it has not yet given back, must be given back just before the object
is destroyed. It is the destructor’s job to do this. A correctly-written destructor knows what
resources the object might still have, checks to see if the object still has them, and gives them
back if the object does still have them.

If you do not provide a destructor, an empty destructor (i.e. one that does nothing):

Coord: : “Coord()
{

// nothing
}

is provided by the compiler, simply so that there is a destructor to call. After all, if there are
all these implicit destructor calls happening everywhere, you want to make sure to have some
kind of destructor in existence for them to call, even if it the actual destructor that is called
does nothing. So, just as with the copy constructor, you always have a destructor, whether you
explicitly write one or not.

When do you want to write one? Well, if you have a class like the one we looked at a bit
earlier:

class Coord {

public:
// whatever you want here
private:
double xCoord, yCoord;
String s;

};

then the default destructor will be fine. The reason is that there is more that goes on during
the destruction process. When the system tries to destroy an object, such a Coord object based
on the class above, there are a number of things that happen. First, as we have discussed, the
destructor for this object is called. In our case, nothing is done here, since we are using the
default destructor, and that does nothing. Next, as we have discussed, the Coord object itself is
destroyed. But what does that mean? Well, ultimately, it means the memory that Coord object
was using — whether local or dynamic — is given back to the system. But first, the destructor
of each of the member data is called! When an object gets destroyed, part of that process is

12

for the destructors of each of the variables to get called, to wipe out any resources the variables
themselves used behind the scenes. Then, finally, the system is alerted that the memory being
used by this Coord object is no longer needed. So our sequence is:

1. The Coord destructor is called. The Coord object itself has not made any specific request
for outside resources, so the destructor for Coord is empty and nothing needs to be done

here.

2. Then, all that is left is whatever directly makes up the Coord object — namely, the actual
member variables of Coord. We proceed to call the destructor for each one of these.

(a)

(b)

The “double destructor” is called on the “double object” xCoord. (The system does
nothing, in that case, since double is a primitive type and so there is nothing to do,
i.e. an “empty destructor”.)

The “double destructor” is called on the “double object” yCoord. (The system does
nothing, in that case, since double is a primitive type and so there is nothing to do,
i.e. an “empty destructor”.)

The String class’s destructor is called to clean up any resources acquired by the
variable s. Note that this is different than resources acquired by the Coord object
itself. All we know is that we have s, a String object. The details of that object are
hidden from us — that is the whole idea of encapsulation. All we know is what we
can do with a String, but not how it works. And thus we certainly don’t know what
resources the String object acquires!! Therefore, just as we trusted in the String
copy constructor to correctly initialize a copy of the String object, similarly, we trust
in the String destructor to correctly clean up after the String object. The Coord
only worries about what it explicitly asks for. Any helper resources its own variables
need, it leaves to its variables to properly handle. The fact that we don’t need to
worry about how the String is implemented in order to use it in the Coord class is a
good thing; it means we can focus on using the String’s abilities in our class, rather
than focusing on making the String object work or cleaning up after the String
when we are done with it.

3. Finally, there is nothing left to do to this segment of memory that holds a Coord — in fact,
with certain things cleaned up it doesn’t even really correctly hold a Coord anymore. Thus,
the system is notified that this memory which used to hold the Coord object’s member
variables can now be reclaimed by the system and reused in a different way.

So, that is how things work when we have a String object as a variable. What about when we
have a String pointer as a variable?

13

class Coord {
public:
Coord() ;
~Coord() ;
private:
double xCoord, yCoord;
String* s;

};

In that case, the constructor is likely going to allocate the needed dynamic String for s to point
to:

Coord: :Coord ()

{
xCoord = yCoord = 0.0;
s = new String();

}

and in that case, that dynamic String object needs to be deallocated somehow. If we continue
to have an empty destructor, well, go back and re-read the 3-step destruction sequence we
discussed just above. If the destructor remains empty, where do we get a chance to deallocate
this String object? It’s not in step 1, since the destructor is empty and doesn’t do anything.
It’s not in step 2, since now you would be calling the “pointer destructor” on s, and a pointer is a
primitive type just like double and nothing is done. (That is, the system does not automatically
dereference pointers or deallocate what they point to, since the system doesn’t even know if they
point to anything of significance, or if they point to something that for some reason needs to
stay, or not. The system only worries about the pointer itself; what it points to is yours to worry
about.) And by step 3, everything is assumed to be cleaned-up and the system moves on as if
it is. Thus, we never deallocated the String and thus we have a memory leak!

The solution is to take care of this in step 1. We write an actual destructor for the Coord
class, with actual code inside it:

Coord::~Coord()
{

delete s;
}

and now, in step 1, the destructor is called, and calls delete on s, and thus deallocated the
dynamic String object. As we described earlier, anything the Coord specifically requested on
its own (and it requested this dynamic String in the Coord constructor) gets deleted by the
Coord destructor in step 1. Then, in step 2, the variables of Coord, via their destructors, release
resources they might have requested which the Coord object knew nothing about. Then, in step
3, since the Coord object and all its variables have released their resources, we assume everything
is cleaned up and erase the Coord object itself from existence by returning its memory to the
system.

So the rule is, if your object never obtains special resources of its own (we’re not talking about
resources its variables might request unknown to it) then your object doesn’t have anything to
release, so a destructor is not needed. But if that object acquires resources, then the class needs

14

a destructor so that each object can have instructions on how to give back the resources it has
acquired.

1.7 The copy constructor, revisited

The existence or lack of a destructor is part of why a copy constructor is needed. Just as a pointer
has no meaningful destructor, likewise it has no meaningful copy constructor. That is, since a
pointer is a primitive type (regardless of its type; every pointer to any type is still a pointer), it
is copied via the bitwise copy technique, just like double and int variables. Therefore, if you
have the class:

class Coord {
public:
Coord() ;
~Coord() ;
private:
double xCoord, yCoord;
String* s;

};

then the default copy constructor not only makes bitwise copies of the double variables, but
makes a bitwise copy of the pointer variables as well. It does not dereference the pointer to copy
what it points to; it just copies the pointer’s bit pattern into the new object — and thus the
new object’s pointer holds the same bit pattern as the old object’s pointer, and thus the new
object’s pointer holds the same address as the old object’s pointer, and thus the new object’s
pointer points to the same piece of dynamic memory as the old object’s pointer. That is, the
default copy constructor would do the same thing as the following code:

Coord: :Coord(const Coord& origVal)

{

xCoord = origVal.xCoord;

yCoord = origVal.yCoord;

s = origVal.s; // only the address is copied
}

This is known as a soft copy. We haven’t really copied the entire object, we’ve just copied
the top level, but any dynamic memory being used by the original object — in this case, the
dynamic String object being pointed to by origVal.s — is now also being used by the new
object, rather than the new object having a copy of that dynamic memory for its own use.

15

a40 10.6 xCoord a40 10.6 xCoord
79 yCoord 7.9 yCoord
a9%052 s af%052 s
a800 ? xCoor a800 | 10.6 xCoor
yCoor 7.9 yCoor
S a9052\ S
a9052 some a%052 roome x
dynamic dynamic
String object String object
(a) (b)

Figure 1.1: (a) Before running copy constructor; (b) After a “soft copy” copy constructor has
run.

This is extremely problematic. First, any change to that dynamic memory that is made
through one object results in the other object being changed as well, since they both point
to the same piece of dynamic memory. We would expect the two objects to be independent,
but instead changing one changes the other. Second, if we don’t have a destructor, then neither
object will delete the dynamic memory when it (the object) goes out of scope. Thus, the memory
never gets freed and we have a memory leak as we discussed before. On the other hand, if we
do provide a destructor, then the first object to be destroyed will delete the dynamic memory
when its (the object’s) destructor gets called, and now suddenly the second object has a pointer
that no longer points to allocated dynamic memory, because that dynamic memory was freed by
the first destructor call. This is very bad. One situation in which this can happen in a sneaky
manner is when you pass an object by value to a function. The copy constructor is invoked, the
object copy has a pointer pointing to the same piece of dynamic memory, and then when the
function exits, the copy is destroyed, and with it, the dynamic memory is destroyed due to the
destructor call. Now the original object’s pointer no longer points to a legal allocated block of
dynamic memory!

So, that is when you need to write your own copy constructor. Since pointers are primitive
types, they are copied in a bitwise manner, when generally, what we really want instead is to
create a new copy of the object the pointer points to. Since you have destructors to prevent
memory leaks, you then need to make sure the copy constructor copies that dynamic memory
correctly because if two objects have shared dynamic memory, the destructor for one can wipe
out the shared memory and then the other object is left with nothing to point to and the user
won’t know something went wrong until a segmentation fault occurs later in the program. (When
we correctly make an entirely independent copy, then that is known as a hard copy, in contrast

16

to the earlier soft copy.)

We would write this copy constructor as follows:

Coord: :Coord(const Coord& origVal)

{
xCoord = origVal.xCoord;
yCoord = origVal.yCoord;
s = new String(*(origVal.s));
3

First we dereference the pointer of the parameter object. That gives us the dynamic memory
of the parameter object. We pass that dynamic memory into the String copy constructor, and
use it to initialize a new dynamic String. And then the pointer in the new object is set to point
to the new dynamic String.

a0 10.6 xCoord a40 10.6 xCoord
7.9 yCoord 7.9 yCoord
a%052 S a’%052 -Ls
a800 xCoor a800 | 106
yCoor 7.9
S a10600
dynamic dynamic
String object String object
al0600 | copy of above
dynamic
String object
(a (b)

Figure 1.2: (a) Before running copy constructor; (b) After a “hard copy” copy constructor has

run.

So, it is generally necessary to write a copy constructor for all your classes which have

pointers as member data (i.e. classes which have member data that point to dynamic memory).
Otherwise, the compiler will supply a simple one, and in the case of classes which have pointers to
dynamic memory, the copy constructor for such a class is too simple and you will have problems.

17

1.8 Overloading Operators

One feature of C++ that is not found in Java is the ability to overload the operators of the
language. In Java, as you might recall, you could use the + operator not only to add two
integers, or two floating-point numbers, but also to concatenate two String objects. All of
those abilities were built into the language. However, if you wrote a class Complex, to handle
complex numbers, you could not use the + operator to add complex numbers; you would have to
write an Add method or some such. The + operator knew nothing about the classes you wrote,
and so it didn’t work for classes you wrote, only classes provided by the language.

In C++, the story is different. Certainly, you can still write functions like Add if you want,
but using the operator symbols can often be very convenient, and thus if you want to overload
the meaning of an operator — for example, to define what + means when the two operands are
of type Complex — you can do that. Overloading an operator is not really much different than
overloading a regular function. The only difference is in how you actually name the function.
Operators are just symbols that are used near variables and values, and having symbols serve as
a function name would look both silly and confusing, and further, would be difficult to compile
correctly:

+(Complex a, Complex b) // this is NOT real syntax, and is INCORRECT

This problem is solved by using the word operator to indicate an operator function. Over-
loading the addition operator, as in the fake, incorrect example above, would really result in the
function name and parameter list appearing as follows:

operator+(Complex a, Complex b)

Other than that difference, overloading operators is really no different from overloading any
other function. You can overload almost any operator in the language, which means you can
have functions with names like:

operator([]
operator<
operator=
operator==
operator?,
operator->

and so on.

You even have the option of using the actual function form of the operator when you call the
operator function. If you did indeed overload operator+ for a class Complex, and if you then
had two variables c1 and c2 of type Complex, then you could use this expression in your code:

cl + c2
but you could also use this expression in your code:
operator+(cl, c2)

And in reality, when you use the symbolic syntax (the upper one above), the compiler will just
expand it to the function syntax (the lower one above). The only difference between an operator

18

and another function is that you do have the “symbol” form available to use as shorthand, instead
of having to actually call a function explicitly. But when you use the symbol shorthand, the
function still gets called. The shorthand is just there for the programmer’s use and convenience.

Warning! This does not mean you should go crazy using all kinds of operators as shorthand.
Use operator overloading only in intuitive ways, or no one else will ever understand your code!
Using + for string concatenation makes sense. Using * or == for database access is not an
overload whose meaning is going to be immediately obvious to anyone, and thus code littered
with such use will be very confusing, and thus such operator overloading should not be done.

One final note about the syntax: another way to use these operators is for the object on the
left to serve as the calling object, and the object on the right to serve as the parameter, when
the function is actually called:

L1 = L2; // L1 is the calling object,
// and L2 is the lone parameter

To clarify what is going on here, you should know that the above function call could just as
well have been written as follows:

L1.operator=(L2);

In other words, the assignment operator function is being called off of the object L1, and the
parameter passed to the “equals” function is the object L2. Just as we could call assign() off
of some object, and pass to the assign() function some other object of that type, here we call
the assignment operator function (which is named operator=) off of the object L1 (whatever
type it happens to be), and pass it a parameter L2 of the same type. Most operators can be
overloaded in the operator(a, b) manner or the a.operator(b) manner (we won’t get into
the pros and cons of each right now). Some, like the assignment operator, must be member
functions and thus must be overloaded in the a.operator (b) form, which is also generally the
more common form.

1.9 The this pointer

The keyword this is simply a “implicitly declared self-referential pointer”. Meaning, when a
member function is called, there is an additional local variable you don’t have to declare yourself,
and that variable will hold the address of the object the member function was called on. From
within the function definition code, you can refer to the pointer as if you had declared it yourself.
So, it is “implicitly declared”, meaning it is declared and assigned automatically without any
effort on your part, and it is “self-referential”, meaning the pointer holds the address of the
object the member function is called on. (This is more or less the same as the “this reference”
in Java.)

class Coord
{
public:
Coord LeftShift5() {xCoord = xCoord - 5; return (*this); }
private:
int xCoord, yCoord;

}

19

In the example above, in the function LeftShift5(), a calculation was done on an object,
and then for the return type, it was ideal to return that object, rather than creating a new one
with the same information and returning that. But, how does one refer to the actual object?
With the this pointer! In the above example, the pointer is dereferenced, giving the actual
object itself. This object is the object that LeftShift5() was called off of, and so we would
expect it to be an object of type Coord. This matches the function’s output type, which is also
Coord.

In fact, when you just use member data variable names in a member function, it is understood
that they are the data of “this” object. So, we could have rewritten the Initialize function
(first seen in lecture #1) as follows:

void Coord::Initialize(double xInit, double yInit)
{

this->xCoord
this->yCoord

xInit;
yInit;

}
or else as follows:

void Coord::Initialize(double xInit, double yInit)
{

(*this) .xCoord
(*this) .yCoord

xInit;
yInit;

}

When we aren’t accessing the xCoord variable from some object using the dot (.) or arrow
(->) member access syntax, it is assumed that we mean to access the xCoord of “this” object
and so the effect is the same as if we had explicitly put this in as we did above. Or in other
words, if from within a Coord member function, we use xCoord by itself, it is assumed to be the
xCoord of “this”; the only way to make it clear we want the xCoord of someOtherObject is
to explicitly use the syntax someOtherObject.xCoord. And because the system will generally
assume we mean this, we generally don’t need to explicitly use it — that is why we’ve never
used it in any code up until this section. (Again, this is more or less the same as the “this
reference” in Java.)

1.10 The assignment operator

Given how often assignment comes up, it is also generally helpful to have an operator= for a class
as well — i.e. it is helpful to overload the operator= function for your own class. Just as with
the destructor and copy constructor, if you don’t provide an assignment operator, one will be
provided to you by default, and just like the copy constructor, this default assignment operator
will perform a memberwise copy. If you do not want a memberwise copy, you need to write your
own operator= function explicitly — and you would decline to use the compiler-supplied default
operator= for the exact same reasons that you would decline to use the compiler-supplied default
copy constructor.

Below is the example of an assignment operator that we didn’t need to write, i.e. the code
does exactly what the default code would have done. This assignment operator is for the version
of our Coord class where we have a String object.

20

class Coord {
public:
Coord() ;
const Coord& operator=(const Coord& origVal); // declaration
private:
double xCoord, yCoord;
String s;

};

// and later, in the .C file...

const Coord& Coord::operator=(const Coord& origVal)

{
if (this!=&origVal)
{
xCoord = origVal.xCoord;
yCoord = origVal.yCoord;
s = origVal.s;
}
return *this;
}

The first line is there to make sure we don’t bother to do any copying if we had invoked this
function via a call such as x = x;, i.e. assignment of an object to itself gets ignored because
the object is already equal to itself. This simply saves time when we have large objects that
can be memberwise-copied; when we have dynamic memory involved, allowing self-assignment
to proceed can actually result in errors (as we will see shortly). So, we compare the address of
origVal — namely, &origVal — to the address of the object we invoked the function on. That
address is stored in this. If we are not attempting a self-assignment, then the two addresses will
be different, and we will proceed with the copying code. If the two addresses are the same, then
we will skip over all the assignment code. Finally, regardless of whether we ran the assignment
code or not, at the end of the function, we return the object we are running the operator= on,
by returning the dereferenced this pointer. The reason operator= returns the object it was
invoked on is so we can chain together assignment statements, as follows:

a=b=c=d;
The above gets expanded by the compiler into:
a.operator=(b.operator=(c.operator=(d)));

Each call to the assignment operator function returns the value and that return value becomes
the parameter in the next call.

On the other hand, if we had dynamic memory in the class, then our class and assignment
operator would appear as follows:

21

class Coord {
public:
Coord() ;
Coord(const Coord& origVal);
~Coord() ;
const Coord& operator=(const Coord& origVal); // declaration
private:
double xCoord, yCoord;
String* s;

};
// and later, in the .C file...

// Coord(), Coord(const Coord& origVal), and ~Coord()
// definitions provided earlier in the notes

const Coord& Coord::operator=(const Coord& origVal)

{
if (this!=&origVal)
{
delete s;
xCoord = origVal.xCoord;
yCoord = origVal.yCoord;
s = new String(*(origVal.s));
by
return *this;
X

Note that we need to delete the old dynamic memory in the assignment operator. For this reason,
for the simple classes in this course the assignment operator will often simply be the destructor
code followed by the copy constructor code, both wrapped in the self-assignment check and with
the return line following that. Also note that, because we delete the old dynamic memory, if
we didn’t check for self-assignment we would (when doing self-assignment) proceed to delete the
dynamic memory we wanted to copy from, since we are assigning a value to itself and so the
dynamic memory in both classes is the same. So, the code will not work for self-assignment,
which is why we need to check for self-assignment before entering the delete-and-copy portion
of the code. (You can actually condense the code above ever so slightly by simply overwriting
the pre-existing dynamic memory rather than deleting it, but I’ll leave that as an exercise for

you.)
1.11 The Law of the Big Three
Finally, we come to the Law of the Big Three, which states:

If you need to explicitly write any one of the destructor,

22

copy constructor, or assignment operator rather than relying
on the compiler-supplied default, then you need to explicitly
write all three.

Usually, the destructor is your triggering clue. If you allocate dynamic memory in the construc-
tors, then you need to delete it in an explicitly-written destructor — and that means that you
need to explicitly write the copy constructor and assignment operator to correctly handle the
copying of that dynamic memory as well. In other words, the three functions come in a set —
either you need to write all three yourself, or you can rely on the compiler-supplied defaults for
all three.

There are rare circumstances where this “law” might not hold, but it will generally be true.

23

