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Chapter 7

Inheritance and virtual functions

7.1 Inheritance

Inheritance allows you to declare one class, with certain member variables and functions, and
then to declare a new class which is an extension of that class, and which can make use of the
first class’s variables and functions without having to redefine them.

class Coord // this is the first class

{

public:
double xCoord, yCoord;
void Initialize(double xInit, double yInit);
void Print();

};

// this is the "extension" class
class LabelledCoord : public Coord

{
public:

int label;

void SetLabel(int theLabel);
};

Conceptually, what we have done here is allow Coord’s variables and functions to be copied into
LabelledCoord, as follows:
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The class Coord
memory needed by Coord object:
enough to hold two doubles

functions supported by Coord object:
Initialize(double xInit, double yInit)
Print ()

The class LabelledCoord
memory needed by LabelledCoord object:
enough to hold two doubles // inherited from Coord
and an int // specific to LabelledCoord

functions supported by LabelledCoord object:
Initialize(double xInit, double yInit) // inherited from Coord
Print () // inherited from Coord
SetLabel (int theColorID) // specific to LabelledCoord

Now, if we create an object of type LabelledCoord:

LabelledCoord L1; // local object
LabelledCoord* Lptr; // local pointer
Lptr = new LabelledCoord(); // dynamic object

then in lines 1 and 3 above (in those two lines, actual objects are created), enough memory is
set aside to hold two doubles and an int. The LabelledCoord object is more than just the int
declared by LabelledCoord; the syntax of inheritance tells the compiler that a LabelledCoord
consists of all the same things we already put into Coord, plus an extra int to store a label.
The class that gets extended (Coord above) is known in C++ as the base class. The class
that is the extension (LabelledCoord above) is known in C++ as the derived class. (Note that
the concept of a base class is identical to the concept of a superclass in Java, and likewise a
derived class is the same as a subclass.)
The specific syntax of inheritance in C++is:

class DerivedClassName : public BaseClassName

(For this course, we will always have the word public above, though there’s a few other things
it could be as well.)
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7.2 Access permissions

When you write a class, the keywords public and private indicate which member variables
and member functions of the class are directly available to clients. (When we say some variable
or function is ”directly available” to a client, we mean that the client can use it by name, rather
than having to call some other function in order to get that other function to use the variable or
function in question.) When a member variable of a class is declared to be private, it doesn’t
mean that variable doesn’t exist — certainly, it does exist, and when an object of the class is
created, space is set aside for that variable. It just means that clients of that class cannot
use that variable by name — they have to ask member functions (which do have access to that
variable by name) to read or write the variable.

It works the same way with inheritance. If there are private member variables in the base
class, then member functions in the derived class cannot access those varibles by name. For
example, if in our base and derived class example from a few pages back, we had made the
member variables private:

class Coord

{

private:
double xCoord, yCoord;

public:
void Initialize(double xInit, double yInit);
void Print();

};

class LabelledCoord : public Coord

{

private:

int label;
public:
void SetLabel(int theLabel);

};
then because xCoord and yCoord are private, not only can clients of Coord not use those
variables by directly by name, but the member functions of LabelledCoord cannot use those
variables directly by name, either. They are marked private in Coord, and so nothing outside
of Coord can use those variables directly by name.

The important point, though, is this: those variables are still part of LabelledCoord. That
is, when you create a LabelledCoord object, there is still space set aside for two double variables
and an int variable. Whether or not a variable exists, and whether or not you can access it,
are two entirely different things. This is no different than clients using objects with private
variables. The clients of Coord can’t get to xCoord and yCoord directly by name. However,
those two variables are still part of any Coord object; the fact that the clients of Coord cannot
reach them by name does not negate the fact that they are there. Likewise here, there are three
variables that are part of LabelledCoord, but the clients of LabelledCoord cannot access any
of them directly by name, and the LabelledCoord member functions themselves can only access
one of them by name. The fact that LabelledCoord cannot access xCoord and yCoord by name
does not negate the fact that they are part of LabelledCoord anyway.
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So, if LabelledCoord does want to access those two variables, it will have to use Coord
functions to do so, just as clients of Coord would have had to do.

What if you did indeed want a derived class to have access to base class variables directly
by name? Well, you could have made them public in the base class, but if you do that, then
not only does the derived class has access to that data, but so does the world at large. One can
imagine situations where you’d want to allow derived classes to access certain information from
base classes, while still keeping the data out of the hands of the world at large.

Fortunately, there is a way to do this : the keyword protected. The access permission
protected is used just like public and private are. Member functions and member variables
marked protected in a base class are available directly by name in derived classes. Furthermore,
they are automatically considered protected in those derived classed as well — so classes derived
from the derived class can still access those variables directly by name, but clients of the derived
class will not be able to access those variables directly by name.

To recap the three access statements then:

class Coord {
public:
// These are accessible by any object, including those of derived
// classes (where they also have public access).
protected:
// These members can be used only by this class and its
// derived classes (where they also have protected access).
private:
// Anything declared here is inaccessible outside of this class. Even
// derived classes cannot use these members.

};

7.3 Constructors and the initializer list

In Java, you had the keyword super to enable you to invoke base class constructors from derived
class constructors. In C++, you accomplish the same thing through the use of a constructor’s
initializer list. If the following were the no-argument constructor for LabelledCoord:

// definition for LabelledCoord no-argument constructor
LabelledCoord: :LabelledCoord ()
{
label = 0;
X

then you can have the no-argument base class constructor called by adding a colon after the
close-parenthesis, and then following that colon with the constructor call:

// definition for LabelledCoord no-argument constructor
LabelledCoord: :LabelledCoord() : Coord()
{

label = 0;
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In the above code, the call to Coord() is part of the LabelledCoord constructor’s initializer
list. The initializer list for a constructor always begins with a colon, placed after the closing
parenthesis of that constructor. Then, after the colon, you list the specific initialization code.
(Above, we have only shown a base class initializer; we’ll see some others a bit later on in this
section of the notes.) Once all your initialization code is done, then you have the opening curly
brace of the actual constructor (the opening curly brace of the LabelledCoord constructor, in
this case), followed by whatever code should go inside the curly braces. Note that the above
example follows this description — the parenthesis of the LabelledCoord constructor comes
first, followed by a colon, followed by the call to the base class constructor (to initialize variables
inherited from the base classs), followed by the open curly brace.

Writing the constructor in this fashion works the same way the super call did in Java —
namely, it ensures that a base class constructor is called, for the purpose of initializing variables
inherited from the base class, before any code is run for initializing the variables added by the
derived class. If you wanted to initialize the base class variables using a constructor other than
the no-argument constructor, then you would simply place those arguments into the base class
constructor call, just as you would have placed those arguments into the call to super in Java:

// alternate definition for LabelledCoord no-argument constructor;
// calls the two-parameters-of-type-double Coord constructor
LabelledCoord: :LabelledCoord() : Coord(5.6, 2.7)
{

label = O;
b

Recall that in Java, a call to the superclass constructor, using super, had to be the first
line of the constructor. This forced the superclass constructor to be run before any of the other
code of the subclass constructor was run. Likewise in C++, the base class constructor must run
before any of the other derived class code can be executed — so that the variables inherited from
the base class can be initialized before the variables added by the derived class get initialized.
So in the example above, the call to the base class constructor on the initializer list gets run
before any of the code inside the curly braces of the derived class constructor gets run. That is,
the Coord () call gets run before the 1abel = 0; line of code is executed.

In fact, there is another way that this works like Java. In Java, not only did you have to have
the super call as the first line of your constructor, but if you didn’t, a super () ; line (i.e. calling
the no-argument constructor of the superclass) was automatically inserted by the compiler as
the first line of the subclass constructor. You didn’t have the option of not calling a superclass
constructor as the first line of a subclass constructor — if you didn’t explicitly do this, then the
compiler did it for you. Likewise in C++, this also happens. If you don’t have the colon and a
base class constructor call after the close parenthesis of the derived class constructor, then the
colon and a call to the base class no-argument constructor are inserted automatically. That is,
these two definitions are equivalent:
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// first definition from examples above
// Coord() is called by default

LabelledCoord: :LabelledCoord() // : Coord()
{

label = 0;
}

// second definition from examples above
// call to Coord() is explicitly written in
LabelledCoord: :LabelledCoord() : Coord()
{
label = 0;
}

So, if the way you want to initialize variables inherited from your base class is by calling
the base class no-argument constructor, then you don’t need to put any constructor call on the
initializer list, since the no-argument constructor of the base class is called by default. On the
other hand, if you wanted to initialize those variables inherited from the base class using some
other base class constructor instead, you’ll need to put a specific call to that constructor on the
initializer list.

Also just like in Java, if you rely on the default, and your base class doesn’t have a no-
argument constructor, you will get a compiler error. If your base class doesn’t have a no-
argument constructor, then you’ll need to choose what other base class constructor to use to
initialize the variables inherited from the base class, and you’ll have to place a call to that base
class constructor on the initializer list of your derived class constructor.

This “initializer list” idea doesn’t get used merely for base class constructor calls. You can
also use it to initialize the member variables of the derived class. For example, if you wanted
to initialize the integer label to 0, you could have written this code instead of the code we’ve
been writing above:

LabelledCoord: :LabelledCoord() : Coord(), label(0)
{

// no code here, but you still need curly braces

}

This is especially useful if you have non-primitive types as member variables. For example,
let’s suppose you had some hypothetical String class you've written, and so the member variable
declaration part of LabelledCoord looked like this:

class LabelledCoord : public Coord
{
private:

int label;

String namel;

String name2;
public:

... // member functions go here

};
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(Never mind what purpose those two String variables might serve; I can’t think of any either.
They’re just here for the sake of the example.) For both of the variables that are of non-primitive
type — our two String variables in this case — the default constructor is called on them by default
on the initializer list. That is, the following two code segments are equivalent, in this case:

LabelledCoord: :LabelledCoord()

{
label = 0;

LabelledCoord: :LabelledCoord() : Coord(), namel(), name2()
{

label = 0;
}

because in the first case, not only is the base class no-argument constructor called by default,
but the no-argument constructors for the String member variables are called by default as
well. So, if you wanted to initialize them using something other than the String no-argument
constructor — if, for example, there was a constructor that took a double-quoted literal and you
want to use that — you would do this as follows:

LabelledCoord: :LabelledCoord() : Coord(), namel("hello"),
name?2 ("world")

label = 0;
}

You are also free to initialize 1abel on that list as well:

LabelledCoord: :LabelledCoord() : Coord(), label(0),
namel("hello"), name2("world")

// no code here, but curly braces must remain

}

So, if you choose to try and initialize such non-primitive-type objects within the curly braces
and not bother with the initializer list, you have to keep in mind that then there is an automatic
call to the no-argument constructor for that object on the initializer list anyway. This means
it gets initialized once by default, and then reassigned within the curly braces using your code.
And in that case, since you are assigning it twice, that is less efficient than just assigning it to
the correct value the first time, and therefore you are better off choosing the correct constructor
and explicitly initializing the member variable using that constructor, on the initializer list.

Note that this “inititialize your non-primitive member data” use of the initializer list has
nothing to do with inheritance. You’ll only be calling base class constructors in inheritance
situations, but any class — whether derived class or not — can use the initializer list to initialize
non-primitive-type member variables.
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7.4 Dynamic binding...or not

As you might recall from Java, a reference to a superclass can point to a superclass object, but
can also point to subclass object instead. Likewise, in C++, a pointer to a base class can point
to a base class object, but can also point to a derived class object instead. For example, the
following code is legal:

Coord* cPtr;
cPtr = new LabelledCoord();

Ordinarily, if you tried writing the address of one type of object into the pointer to another
type of object, the compiler would complain. But if the type of the object is derived from the
type of the pointer (as LabelledCoord is derived from Coord in the example above), then the
compiler is okay with this.

This becomes something we care about when both the base and derived classes have functions
with similar names:

class Coord
{
private:
double xCoord, yCoord;
public:
void Print() {cout << "Coord!" << endl;}
};

class LabelledCoord : public Coord
{
private:
int label;
public:
void Print() {cout << "LabelledCoord!" << endl;}
};

Note that both classes have a Print () function. At first glance, you might think this would
be a compiler error. After all, LabelledCoord inherits the functions from Coord, and so it
already has a Print () function. Now, we have given it another Print () function, in addition
to the one inherited from Coord. Since the name and the parameter list are identical for the
two functions, this would seem to be a problem. However, it is not. In cases such as this, where
a function we’ve specifically written into a derived class would clash with a function which that
derived class inherited from the base class, the derived class function simply “covers up” the
inherited base class function. That is, the compiler lets this slide, and then whenever we call
Print () off a LabelledCoord object, the LabelledCoord version is chosen, rather than the
Coord version.

That means that when you are invoking the Print () function off a local variable, the type
of the local variable indicates the Print () function that is chosen:
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Coord c1;

LabelledCoord 1lci;

cl.Print(); // prints "Coord!"
lcl.Print(); // prints "LabelledCoord!"

Note that the compiler could make those decisions at compile-time. It knows the type of the
variable, and so it can use that type to figure out which Print() function should get called.
Likewise, if you have a pointer of one type, to an object of that same type, the compiler makes
the decision based on the type of the pointer:

Coord* cPtr = new Coord();

LabelledCoord* lcPtr = new LabelledCoord();
cPtr->Print () ; // prints "Coord!"
1cPtr->Print(); // prints "LabelledCoord!"

The pointer cPtr is of type Coord, so the Coord version of Print () is chosen in the third line in
the above example. Likewise, 1cPtr is of type LabelledCoord, so the LabelledCoord version
of Print () is chosen in the fourth line in the above example.

The question is, what happens in this case:

Coord* cPtr = new LabelledCoord();
cPtr->Print () ;

Here, the pointer, and the object it points to, are of different types. So which version of Print ()
gets chosen?

If you remember the rules of dynamic binding from Java, you would say that the function
that runs is based on the object type, and thus the LabelledCoord version of Print () is chosen
above.

And you’d be wrong.

If this were Java, that is what would happen, but that is not what happens in the above
C++ code. The compiler still wants to make all the decisions itself, and so it bases its choice of
Print () function off the pointer type. Since the type of cPtr is Coord, it is the Coord version
of Print () that is chosen. It would not make any difference if you had a conditional involved:

Coord* cPtr;

int x;
cin >> x;
if (x == 0)
cPtr = new Coord();
else

cPtr = new LabelledCoord();
cPtr->Print () ;

In the above case, the compiler doesn’t even know what type of object cPtr points to, since
that depends on user input, which isn’t available until run-time. So, the compiler doesn’t try to
base any decisions on the object type. When you have a base class pointer, the compiler chooses
the base class version of the function, without worrying at all about whether that pointer will

115



eventually point to a base class object or a derived class object. The compiler uses the type of
the pointer to determine which class’s function gets called.

This is a definite change from Java. In Java, it would not be the compiler that would select
the version of Print() in the code above. Instead, in Java the run-time environment would
select the version of Print (), based on the type of the object rather than the pointer. This
run-time selection based on object type was something that was referred to as dynamic binding,
because the proper function defintion was chosen (i.e. bound to the function call) at run-time
(i.e. dynamically) rather than at compile time (i.e. statically). Above, we are saying that C++
uses static binding — the compiler makes the decision, based on the pointer type, and thus
no decisions are made at run-time, since they have already been made by the time the program
begins running.

It would seem, then, that all the advantages dynamic binding gives us in Java are absent in
C++. However, this is not so. We do have dynamic binding in C++, just as in Java. However,
in C++, it is necessary to “turn dynamic binding on”, whereas in Java, it is on by default. Since
we have not turned it on, we have static binding above — the proper function definition is chosen
based on the type of the pointer. Once we turn dynamic binding on (which we will discuss in
the next section of these notes), then the choice of Print () function will be made at run-time,
and will be based on the type of the objcet cPtr points to, rather than being based off the type
of cPtr as the compiler does.

Why does C++ do things differently than Java? Well, if the run-time environment must
make the choice of function binding, reading various information to make that choice will take
time. Therefore, the program will take slightly longer to run. On the other hand, if the compiler
makes that choice, then there is no choice to make at run-time and so the program can run
slightly faster. In Java, you automatically have dynamic binding on, and so you automatically
need to wait until run-time to have these bindings done and so your program will automatically
take a bit longer to run. Whereas in C++, the fastest way to do things is what is done by
default, and if you happen to want the flexibility that dynamic binding provides, then you need
to make the choice to turn dynamic binding on yourself. Remember, in C++, nothing is done
for your that you do not specifically request yourself. Having to turn on dynamic binding is one
example of something that you need to do yourself — the language doesn’t assume you want to
take the extra time needed to support that feature unless you specifically say so.

7.5 Virtual Functions

We turn on dynamic binding in C++ using the keyword virtual. This keyword is placed
directly in front of the function for which we want to turn on dynamic binding:

class Coord

{
private:
double xCoord, yCoord;
public:
virtual void Print() {cout << "Coord!" << endl;}
};
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class LabelledCoord : public Coord
{
private:
int label;
public:
void Print() {cout << "LabelledCoord!" << endl;}
};

If we declare a member function of a base class as virtual, then when we encounter code such
as the code we listed in the previous section of these notes:

Coord* cPtr;

int x;
cin >> x;
if (x == 0)
cPtr = new Coord();
else

cPtr = new LabelledCoord();
cPtr->Print();

then in that situation, the compiler does not note that cPtr is of type Coord and thus choose the
Coord version of Print (). Rather, the compiler merely verifies that the line cPtr->Print();
will work no matter what cPtr points to, and after that, the decision of what version of Print ()
gets called is left to the run-time environment, which makes the decision based on the type of
the object that cPtr points to at run-time. This is known as dynamic binding.

Once you declare a function to be virtual, it remains virtual no matter how many times it
gets redeclared in derived classes. So, you don’t need to declare it virtual in each derived class.
However, it’s probably a good idea to do so for documentation purposes.

class Coord

{
private:
double xCoord, yCoord;
public:
virtual void Print() {cout << "Coord!" << endl;}
};

class LabelledCoord : public Coord
// This class is a derived class
{
private:
int label;
public:
virtual void Print() {cout << "LabelledCoord!" << endl;}
};
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Three points regarding this issue:

e You don’t put the keyword virtual in front of the function definition. You only put it in
front of the function declaration inside the class declaration. In practice, this means you
put the keyword virtual in the .h file but not the .C file.

e Each individual function must be declared virtual. That is, declaring one function as vir-
tual does not suddenly make all the other functions in that class virtual as well. Therefore,
it is possible to have some functions in a class be virtual, and some not be virtual —i.e. to
have dynamic binding for some functions in a class and static binding for other functions
in that same class.

e You can never have virtual constructors, but destructors can be virtual. In general, if
a class has virtual functions, its destructor should be virtual. This is because you want
dynamic binding to work on the destructor as well. If we run the line delete cPtr;,
we want the Coord destructor to run if cPtr points to a Coord object, and we want the
LabelledCoord destructor to run if cPtr points to a LabelledCoord object.

7.6 Abstract classes and pure virtual functions

In some instances, you will have one or more functions in a base class which don’t have any
definition that makes any sense. You would have declarations for these functions only so that
the function name appears in the base class to be overwritten later by identical function names
in the derived classes. But you would have only the declaration, and no definition. In Java,
these were known as abstract methods. In C++4, they are known as pure virtual functions, and
they are declared as follows:

virtual function_declaration = O;

// for example:
virtual void Print() = O0;

A class with at least one pure virtual function is called an abstract class. Unlike in Java, we
don’t specifically notate that the class is abstract; it simply is abstract, with no syntax to signify
this. As with Java, you cannot create objects of classes which are abstract.

7.7 Proper Inheritance

Just because you can use inheritance in certain ways doesn’t mean you should use it in those ways.
Many serious design errors can result from using inheritance improperly. Proper Inheritance is
defined to be a use of inheritance in which derived classes “promise no less and require no more”
than the base class they are derived from.

An excellent example of this is the class “Ellipse/Circle” inheritance problem. Imagine you
have the following inheritance hierarchy:
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class Ellipse

{
double xAxis, yAxis;
};
class Circle : public Ellipse
{
};

Is this inheritance okay? Certainly we might prefer to implement Circle using a single “radius”
variable rather than two axis variables, but since a circle is basically an ellipse with an equal-sized
x-axis and y-axis, why not save ourselves the work of writing an entirely new Circle class and
reuse the Ellipse code by deriving Circle from Ellipse? The various functions of Ellipse
would then be functions for Circle as well, and so, for example, we could read either xAxis or
yAxis (presumably using public functions of E11ipse that were written for that purpose) to get
the radius of the Circle object.

The problem arises in that some of the functions of E11ipse don’t work nicely with the idea
of a Circle. For example:

class Ellipse

{
// scales xAxis by a factor of xFac and y-axis by
// a factor of yFac
virtual void Scale(xFac, yFac);
double xAxis, yAxis;
};
class Circle : public Ellipse
{
};

What do we do with Scale in Circle? We appear to have three options:

1. We can accept Scale as is, as a public function of Circle. This means that we will have
to let Circle scale differently in the x and y directions, since the Scale function permits
that to occur. But, if Circle objects can have different x and y axis lengths, then what
differentiates a (deformed) Circle from an Ellipse? Nothing, really. If we allow Scale
to operate on Circle as it currently exists, then the resultant ability to deform Circle
objects means we may as well not even have had a Circle class, since it isn’t behaving
much differently than a regular E1lipse.
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2. We can try and shut the Scale function off somehow for the Circle class:

class Circle : public Ellipse

{
public:

// does nothing at all

virtual void Scale(xFac, yFac) {}
};

or, alternatively,

class Circle : public Ellipse

{
public:
private:
// scales circle exactly as ellipse’s scale function
// does, so we hide it in the private section so the
// user can’t get to it
virtual void Scale(xFac, yFac) { whatever in here;}
};

In the first case, we simply make Scale an empty function; in the second, we restrict
access to it.

The problem with both of these methods is that if we had the following code:

Ellipse* elPtr;
// some more lines of code, such as maybe elPtr = new Ellipse();
elPtr->Scale(2,3);

then we would like to see a consistent result. That is, when we wrote the above code, we
assumed first that we could call Scale off of an Ellipse object or an object of a class
derived from Ellipse, second that it would do something, and third that the particular
something it would do would be to scale the ellipse to the appropriate factors. We assumed
all of that because it was in the specification of the Scale function in the E11ipse class.
Later, we come along and add the Circle class, and if we add one new line of code inside
the section of code indicated with the comment above:

elPtr = new Circle();

then the elPtr->Scale(2,3); line of code won’t work anymore. The point of inheritance
is to allow old code to call new code, but here adding the new code breaks the old code and
so we have to go in and mess with things. This is where design problems and huge later-
maintenance issues arise. And the reason we have a problem here is because the Circle
class “promised less” than its base class (E1lipse) did — namely, Circle said that “even
though Ellipse promised you that Scale was call-able, that it at least did something,
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and that specifically it did what the function specification describes, my version of Scale
either doesn’t work, doesn’t do anything, or doesn’t do what the original specification
described.” We have promised less and thus have run into trouble.

3. Finally, we could simply require that if elPtr points to a Circle, you can still use the
Scale function but you must pass it two equal values as parameters (so that the Circle
scales in equal magnitudes both ways and remains a circle). However, just as with the
second option, this option will break the current elPtr->Scale(2,3); line of code. Here,
we have “required more” — we have tacked on additional requirements to calling the Scale
function that were not in the original specification. So, we again run into trouble.

So, what do we do? Well, we admit to ourselves that, as nice as the mathematical abstraction
may be, in this case a Circle should NOT inherit from an Ellipse. That is, inheritance is
NOT about a derived class being more specific; it is about a derived class being substitutable
for the base class. In our examples above, Circle is a more specific form of Ellipse, but it
is not perfectly substitutable for E11ipse and thus it is not inheritance we should attempt. If
you promise no less in a derived class and require no more in a derived class, then that insures
it is substitutable for a base class and that is proper inheritance — when derived class objects
are perfectly substitutable for base class objects. You can still add new functions to the derived
class, of course — that would be promising more and that is fine. But your derived class has to
at least support the behavior in the specification of the base class — that is the bare minimum
it must do.

Your intuition does not matter. Code reuse does not matter, as that is only the second
purpose of inheritance. Inheritance is first and foremost about substitutability and you should
NOT violate that rule even if “intuition” says you should (for example, even though intution
says that circles are more specific forms of ellipses, you should not derive Circle from Ellipse
if E1lipse has a Scale function).
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