(CS225 : Data Structures and Software Engineering
Parameter Passing, Reference Variables, and const

Jason Zych

(©2001, 1999, 1997 Jason Zych

Chapter 1

Parameter passing

1.1 Arguments and Parameters

The symbol “&” has a few different purposes, depending on where it occurs in the code. As
we have already seen in the pointer section, “&” can be an operator meaning “address of”.
However, it only has that function when it appears in front of a variable name inside a block
of code. The symbol “&” may also appear after a type in a function signature, and in those
situations, the “&” indicates a parameter that is a reference variable.

In order to accurately explain what a reference variable does (at least, in the context of
passing parameters to functions), it is necessary to also understand how parameters can be
passed to functions without using reference variables. So, let’s examine three different functions,
and how we would pass a parameter to each one of them.

// Example 1
int IntMinusi(int oldVal)
{

oldVal = oldVal - 1;
return oldVal;

// Example 2
int IntMinus2(int* oldVal)

{
(*01ldVal) = (*o0ldVal) - 2;
return (*xo0ldVal);

// Example 3
int IntMinus3(int& oldVal)
{
oldVal = oldVal - 3;
return oldVal;

}

Assume also that we have an integer, myInt, that we want to pass into the above functions, and

3

that we have a different integer, secondInt, that we will use to store the returned value of the
above functions. Initially, only myInt has a value assigned to it:

int myInt = 31;
int secondInt;

a| 31 ----myint __| caling
8 ? ----secondint| function
al?

other stuff

Figure 1.1: Initial memory configuration

For example 1, we would call the function as follows:
secondInt = IntMinusl(myInt);

Note that the function IntMinusl has an integer variable as a parameter, and thus the value
we need to pass to this function is an integer value. When we pass myInt to IntMinusl we
are indeed passing it an integer value, because myInt holds an integer value. So, all seems to
be correct. However, this does raise the question, how are oldVal (in the function IntMinus1)
and myInt related? The answer is, passing myInt to the function IntMinus1 results in a copy
of myInt being created in memory for the function to use. It is this copy that is given the name
oldVal.

a| 31 --F-myint __| _caling
8 ? ----secondint| function
al2

other stuff

31 --]--oldval _|

--cdled
function
(IntMinusl)

Figure 1.2: Memory while inside IntMinus1 (pass by value)

In this case, any alterations that are done to the parameter o1dVal from within the function
IntMinus1 are done to the copy of “31” (which is stored in o1dVal), not to the original (which
is stored in myInt). The original remains unchanged. For this reason, this parameter-passing

4

technique is known as “pass by value”, because it is only the value that is passed, and only the
value that is used. The actual variable that was passed in was irrelevant, because what was used
was a copy of that variable — i.e. a copy of the value inside the variable. All that was imporant
was the value inside the object. So, above, secondInt would hold the new value, since that was
returned from the function. However, myInt would remain unchanged, since the subtraction
done to it was done only to a copy of myInt, called oldVal, and not to myInt itself. (And,
of course, once we return from IntMinus1, that function’s stack frame is gone and o0ldVal no
longer exists.)

a| 31 --F-myint __| _caling
a8 |2 30 --F-secondint | function
al2

other stuff

3130 ---- oldval

1--called
function
(IntMinusl)

Figure 1.3: Changing 01dVal does not change myInt (pass by value)

Note that we could have achieved the same results by simply calling the function as follows:
secondInt = IntMinus1(31);

In this case, oldVal would still be assigned the value “31”, because that was the value that
was passed to the function IntMinusl. The only difference here would be that in the first case,
we passed to IntMinusl a variable which held the value 31, and in the second case, we passed
the actual value 31. From the standpoint of IntMinus1, though, there is no difference between
the two. Either way, IntMinus1 receives the value “31” and stores it in the integer variable
oldVal. Since the variable we are passing to the function is irrelevant (since all we really use is
the value), we don’t even need a variable at all, and this is seen in the above example where we
pass in a value directly.

With pass-by-value, you always have the choice of passing in a literal value to the function,
or just passing in some expression and letting the machine evaluate the expression to get the
value and then send that value to the function. But regardless of which way you choose, it
appears the same to the called function (IntMinus1 in this case) — a new value is given to the
called function and the called function stores that value in its parameter variable, and hence a
copy is made of the value and alterations are made only to the copy.

So, if a programmer wanted to actually change a variable’s value from within a function, one
way to do that would be to use the technique in the second of our three examples, which we will
call pass-by-pointer. Such a function would be called as follows:

secondInt = IntMinus2(&myInt);

Note that, since IntMinus2’s parameter variable is of type “integer pointer”, we must pass
in a value that an integer pointer variable can hold — namely, the address of an integer object.
If the calling function had a variable that was an integer pointer — for example, if we had said

int* myIntPtr = &myInt;
secondInt = IntMinus2(myIntPtr);

then that would be okay as well. The first case corresponds to our passing in of “31” directly,
since in this first case we are directly passing in an address (the expression &myInt will result in
an actual machine address, as we have previously seen). In the second case, we store the address
in a variable of the appropriate type (an “integer pointer” variable in this case) and then pass
that variable to the function IntMinus2, just as we passed myInt (which held the value 31) to
IntMinusl in the first example. And again, no matter which way we choose to send a value to
the called function, the called function sees things the same way.

aa| 31 ----myint __| caling
8| ? ----gecondint| function
a2l a4 ---- my|ntPtr

- | other stuff

Figure 1.4: Memory before calling IntMinus2 (“pass by pointer”)

Just as before, the value we pass to the function is passed-by-value. However, here, it is the
address that is our value, not the integer 31. So, what we make a copy of is the address — i.e.
we create a new integer pointer variable to store the address we are passing to IntMinus2, just
as we previously created an integer variable to store the integer we were passing to IntMinus1.
When we pass myIntPtr to IntMinus2, the value (the address) in myIntPtr cannot be changed
because we make a copy of that address to store in IntMinus2’s parameter variable oldVal.

s 31 ----mylnt __| cdling
8| ? ----secondint| function
a2z g4 ---- mylntPtr
* | other stuff]
a4' ___'Oldval ""Ca“ed
function
(IntMinus2)

Figure 1.5: Memory while inside IntMinus2 (pass by pointer)

All references to oldVal in the function refer to the newly created copy of the address, not
to the original address itself. If we change 01dVal, the parameter “integer pointer” variable,

6

to hold a different address, the original “integer pointer” variable (myIntPtr) still holds the
address of myInt. Or, in the first case here, where we directly passed the address of the integer
object, there was no original “integer pointer” variable in the first place.

So, just like example 1, we have passed in a value (integer in example 1, address in example
2), and a copy of that value is created for the function to use, and so alterations done in the
copy are not done to the original value sitting in the original variable. The difference is that in
example 2, we have the address of the original integer, and so we can alter the integer. That
distinction is important:

e In example 1, we passed an integer, made a copy of that integer, and performed alterations
to the copy. Those alterations were not made to the original integer.

e In example 2, we passed an integer address, made a new integer pointer variable to hold
that address, and performed alterations to the copied address in the new pointer variable,
rather than to the address in any original pointer variable that we may have passed in.
However, by using the address in the new pointer variable to get to the original integer, we
can make alterations to the actual integer. It is the address that must remain unchanged
here, and the original pointer variable that holds that address. But we can change the
actual integer.

This alteration of the integer via the use of the address we already have is what is going on
in example 2. The line

(*01ldVal) = (*0ldVal) - 2;

dereferences the pointer variable 0o1dVal to get the memory cell at a4. Then, we say that the
value in this cell should be set equal to the current value in this cell minus 2. Thus, the value
in cell a4 — which happens to be the value of the variable myInt — has now been decreased by 2.

a|-3129 ----myint __| _calling

8| ? ----secondint| function
a2z g4 ---- mylntPtr
* | other stuff

ad ----oldvd |

--cdled
function
(IntMinus2)

Figure 1.6: Memory after first line of IntMinus2 (pass by pointer)

Now, the second line returns *oldVal — that is, we dereference oldVal to get the cell at a4,
and return the value that is in that cell, which is 29. Thus, secondInt is set equal to 29. Just
as with our call to IntMinus1, our call to IntMinus2 has resulted in secondInt being given
the desired value. The difference is that with IntMinus2, the original integer variable has been
changed as well, whereas with IntMinus1 it was not changed.

7

a4 |31 29----myInt __|. calling

a8 /f} 29 il '%Cond”']t funCtlon

alzl a4 ---- myIntPtr

* | other stuff L
a4 ----oldvd called
. function
: (IntMinus2)
completed

Figure 1.7: Memory when call to IntMinus2 is completed (pass by pointer)

1.2 Reference variables

There are a few problems we face if those are the only two parameter-passing techniques open
to us:

1. If we want to alter an object, we have to pass a pointer to an object and work through the
pointer, rather than pass the object itself. This results in some messy syntax (note that
the example 2 code is slightly messier than the example 1 code), and the messier syntax
gets, the more error-prone it gets. A program could have incorrrect results simply because
the programmer forgot a single dereference.

2. If we don’t want to alter an object, and want to avoid the messy syntax of example 2,
we could use example 1’s pass-by-value technique. But in that case, we need to create
a second copy of the object in memory. We aren’t just using an already-existing object,
we’re making a new copy for our function to use. This results in extra time needed to
copy the value, and it also results in extra memory being used to hold the copy (the extra
memory being used in our examples is the cell needed for the variable 01dVal). This extra
time and extra memory might not seem like a big deal when our variables are of “small
types” such as integers, but if we had an object of a larger type, taking up a lot of cells,
then the time to copy those cells and the memory needed to store the copy could both be
significant.

To solve these two problems, reference variables were created. This is the method used by
example 3, a method we call pass-by-reference. You call the function as in example 1:

secondInt = IntMinus3(myInt);

except here, the type that the function actually accepts is not an integer, nor is it an integer
pointer. Rather, it is an integer reference. Note the “&” after the type int in the function
signature of the IntMinus3 function. When the “&” appears after a type name in a function
signature, it means that the following name is not a regular variable of that type, but rather a
reference variable of that type. In IntMinus3, the variable 01dVal is of type “integer reference”,
and not of type “integer”.

So what is a reference variable? The idea is, the integer object myInt is used exactly as
it exists, and the function simply reaches it through a different name, the name oldVal. The

8

al 31 --F-mylnt __| _caling
8| ? ----secondint| function
al?

other stuff

Figure 1.8: Memory before call to IntMinus3 (pass by reference)

original name (myInt in this case) is within the scope of the calling function, so you can use that
variable name in the calling function but you cannot use that variable name inside IntMinus3.
Conversely, the variable name oldVal is within the scope of IntMinus3, so you can use that
name inside IntMinus3, but you cannot use it inside the calling function — neither before the
call to IntMinus3 nor after that function call returns. But, both variable names refer to the
same memory cell.

a| 31 ----myint __|__caling
8 ?\ ----secondint | function
al2 .

other stuff *

N

-Oldval ""Ca”aj

function
(IntMinus3)

Figure 1.9: Memory when first entering IntMinus3 (pass by reference)

One helpful way to think about this is to imagine that you and I are involved in espionage.
You want to send packages to me by way of secret courier. Now, you have a number of secret
couriers you could send to me, among them Bob, Susan, and Jim. I, on the other hand, have no
idea who your couriers are or what their names are, but I know that they are your agents, so
I decide I will just call them all “Agent”. This is similar to our real-life function call example,
where IntMinus3 doesn’t know the real name of the variable you are passing in, so it decides to
just call all of the possible variables oldVal.

So, the first time you send me a package, you send Bob as the secret courier. And I answer
my door, see a man with a top-secret package, and say, “Hello agent!”. Bob, who is new to the
spy business and somewhat nieve, says, “My name isn’t Agent, it’s B-” but before he can finish
saying his real name, I reply, “I don’t need to know your real name; I'm just going to call you
Agent.” At this point the Agent and I perform all the secret handshakes and utter the secret

9

code words and then he transfers the package to me.

The next time you send me a package, you send Susan as the secret courier. Again, I answer
my door, and upon seeing someone carrying a top-secret package, I say, “Hello agent!”. Susan,
like Bob, is new to the spy business, and starts to say, “My name isn’t Agent, it’s Su-". But
again, before she can finish stating her name, I say to her — as I said to Bob — “I don’t need to
know your real name; I’'m just going to call you Agent.” And again, we complete the handshakes
and code words and then she transfers the package to me.

No matter who you send to my door next, I don’t need to know their name. I can just call
them “Agent”, and your courier knows I am referring to him or her, and we can complete the
transaction. I never need to know the real name of any Agent; instead, I give them a name of my
own choosing — Agent — for the purposes of our interaction. This is the basic idea of reference
variables. The function IntMinus3 doesn’t need to know the real name of any integer variable
you send to it via a function call. The function simply says, “Aha! You are an integer variable!
I will call you o1dVal.”, and then proceeds from there, running the IntMinus3 code, using the
name o0ldVal to refer to the variable that was sent to it by the calling function in the same way
that I used the name “Agent” to refer to the courier that was sent to me by you.

This means, of course, that when you subtract 3 from the value of oldVal, you are also
subtracting 3 from the value of myInt, since both names refer to the exact same memory cell.
In this manner, we are able to alter our integer variable from within the IntMinus3 function,
but we don’t need to use the many deference operations that we needed to use to accomplish
this task in the IntMinus2 function. Instead, our syntax, with the exception of one character —
the “&” in the function signature after the type — is the same as the relatively simple syntax of
IntMinus1. Thus, we get the best of both worlds — relatively clean syntax while still being able
to alter variables from within the functions we send them to.

a |31 (28----myint __| _caling
a8 r) \\ -——-Secondlnt fUﬂCtIOﬂ

~

al2 '
other stuff

N

'Oldval ""Ca”aj

function
(IntMinus3)

Figure 1.10: Memory after first line of IntMinus3 (pass by reference)

This results in the clean syntax of pass-by-value, but with two benefits over the pass-by-value
method:

1. We can now make changes inside the function (in this function, we are making them to
the variable o1dVal), and the changes are made to the original object. The end result of
this function is that secondInt holds the decreased value, as always, but, as with example
2, myInt itself is decreased as well.

2. It is not necessary to create a copy of the original object. Under the “example 17 way

10

a | 3L . 28----mylnt __[. _calling
8| 228"\ ----secondint function
al2 .

other stuff *,

"Oldva| ""Ca”ed

function
(IntMinus3)

Figure 1.11: Memory after we return from IntMinus3 (pass by reference)

of doing things, if we passed an object to a function, we had to make a copy of it. With
reference variables, we use the actual object itself, instead of making a copy. This means
we save time — the time needed to copy the data from the original object to the copy of
that object — and we also save the memory that would be needed to store the copy.

Note that, in actual machine languge, reference variables might be implemented in a
“pass-by-pointer” manner. That is, the true implementation of example 3 could be similar
to example 2, only the obtaining of addresses and the dereferencing of those addresses
would all be done automatically for you behind the scenes, rather than you having to do
those things explicitly as in example 2. You can simply think in terms of the “renaming”
abstraction we have already discussed. However, even if the compiler does indeed insert
such code behind the scenes, there is still only the memory for one pointer needed — which
for large objects is still much less memory than if you were to copy the entire object.

Note that, unlike with pass-by-value and pass-by-pointer, you have only one option of what
to pass when using pass-by-reference. That is, you have to pass a variable. You cannot hardcode
a value into the function call (as we did when we passed 31 to IntMinusl1 or when we passed
&myInt to IntMinus2), because there is no memory location that is holding that value, and thus
nothing to actually rename. Passing-by-reference is a renaming of a memory location, and thus
you need to pass in a variable and not just hardcode a value into the function call. (If you do
hardcode a value in the function call, some compilers will create a temporary internal variable
to store that value, so that the passing-by-reference still makes sense. In those situations, the
compiler will also likely warn you what is going on, so that you can decide whether to accept
the situation or change it.)

1.3 Returning a value from a function

It is possible to return a value from a function using the same three ways that we passed values
into a function:

1. You can return-by-value. In that case, you just have the regular return type listed —
int, or Coord, or whatever. In those situations, whatever you happen to be returning, a
temporary copy is made by the program behind the scenes, and the expression that uses
your return type reads that copy, rather than the original value you tried to return.

11

2. You can return-by-pointer. That is, you can return the address of a value, instead of the
value itself. As we have already mentioned, it is very dangerous to return the addresses of
local variables!! However, if you had some more permanently-stored data, you might have
a reason to return the address of that data. If you are indeed returning an address, then
your return type would be a pointer — int* or Coordx*, for example.

3. You can return-by-reference. In these cases, you’d have the & after your type, just as in
the parameter list — that is, your return type could be something like int& or Coordk,
for example. In this case, you would need to be returning a stored data of some kind
— not just a value — so that there was some memory cell to rename. Also, just as with
return-by-pointer, it would be very dangerous to return references to local variables, since
those variables go away and so you are returning a new name for a memory cell that will
soon cease to be under your control.

The function call itself becomes the “new name” for the specific object that is returned
by reference. For example, if some object myVal had a member function Access() that
returned an integer member variable by reference, then we could do things like this:

myVal.Access() = 5;

The idea is, the function call itself becomes the “variable name” for that memory cell that
was returned. We could then use that function call in ways similar to how we would use
a variable name — i.e. we could read from that “renamed” cell, or we could write to it (as
in the example above). This concept is admittedly a bit strange, but you will shortly see
some more examples of this and get a feel for why and when we’d want to return something
by reference.

1.4 The const keyword

You will often encounter the keyword const in function signatures. Depending on where it
occurs, it can mean one of a number of things, though all the meanings are related in some way
to declaring something to be constant. We will look at three of the more common usages here:

1. If it appears in front of a parameter:

int MovePiece(const Piece& currentPiece); // perhaps from a
// chess program

then it means that that parameter must remain constant for the life of the function. If
you try to change the value of the parameter during the function, you will get a compiler
error. Note, that “during the function” means “at any point in the program until you
leave the function”. This means that if you call a second function from inside this one, the
parameter must remain constant in that function as well. Once you declare a parameter
to be constant for a function, then no matter what you do in that function, and no matter
what else you call while inside that function, the parameter must remain constant until
the end of the function. This will often be the cause of compiler errors or warnings you
may get relating to the const keyword. If you declare a parameter to be constant, and

12

then pass that parameter to a function that can change the parameter’s value (never mind
if it actually does, the point is that if the parameter is not const for that function, then
it conceivably could), the compiler will complain.

This use of const is seen very frequently with reference variables. This may be puzzling
at first...why would we pass something by reference, and then make it constant? Doesn’t
passing it by reference mean we want to change it? The answer is that in situations like
that we are taking advantage of the second and third properties of reference variables,
but not the first. We don’t want to change the argument to that function, but neither
do we want to use up time and memory creating and storing an entire second copy of it.
So instead, we could make the original argument (rather than a copy of it) available to
the function by using pass-by-reference, but by simply marking the parameter as being
a constant for the life of the function, we ensure that the parameter — which is also the
original, because we are using pass-by-reference — does not get altered by mistake. This
way, we save copying time and memory while at the same time still preventing alteration
of the original variable from inside the function.

. If const appears at the end of the function signature of a class’s member function:

int Print() const; // print the information of a Coord object,
// for example

then it means that the object you are calling the function on must remain constant until
the end of the function. So, any member functions of a class that are declared const in
this manner cannot write to the member variables of that class. Such member functions
can still read the member variables. The functions just can’t write to those member
variables. This usage of const often appears in functions that are designed to read and
return member variables of an object; since you are only reading the variables, there is
no need to change them, so you make those functions const to be sure that you don’t
accidentally do this (because, again, if you then do try and write to those variables anyway,
the compiler will complain).

13

3. If it appears at the beginning of the return type:
const Coord& Foo(); // return type is const Coord&

then it means that whatever is returned is constant. The purpose of this syntax is to
protect a reference variable, as in the example above. This function (Foo()) returns a
reference to a Coord object. In a read-only situation, this works wonderfully; we only
need to read a value, so why return a copy of the value when it’s easier to just use that
actual value (via a reference)? The problem is that some badly written code may then
try to write to whatever is returned. So, in the situation above, whatever Coord object is
returned via the reference variable is constant if we access it through this reference. We
may change this object some other way, but the particular reference our calling expression
uses to access this returned data will not allow alteration of the object it refers to. (Just
as with return-by-reference, return-by-const-reference requires some examples to better
illustrate, and we will show you those soon.)

The phrase const correctness refers to the idea of using const everywhere it should be used.
That is, any parameter that you know will remain constant, put a const in front of it. Any
member function that won'’t alter the object, put a const in front of it. Any return value that
you pass back by reference, if that reference should not allow you to change what it refers to,
then put a const in front of the return type. The big problem with using const is that, more
or less, it has to be used correctly everywhere, or not used at all. For example, if we have a
function:

void Foo(const Coord& myVal)

{
myVal.Print();

then, since myVal is supposed to remain constant until the function Foo has ended, it will not be
permissible to call Print () off of myVal unless Print (), a member function, has been marked
const. Otherwise, the compiler will give you an error message, something like “trying to call
non-const member function on const object”. Now, perhaps Print () doesn’t change myVal at
all. That does not matter! When compiling the line myVal.Print () ;, the compiler won'’t try
and figure out whether Print () can change myVal. It will simply note if Print() is marked
const, and will complain if it isn’t. So if you're going to try and mark the parameter myVal
as const, then putting the const at the end of the declaration of Print () (whatever file that
declaration is in) will also be necessary.

This can raise problems for you if you use someone else’s library code for your own program,
and that library code does not make correct use of const. So, sometimes you would want to use
const correctly yourself, but need to come up with some bizarre hacks in a few places because
someone else’s code, which you are using, doesn’t do things correctly. The ideal situation is
when const is used correctly in all the code you are using written by someone else, and then
you can correctly use const yourself as well, and thus take advantage of the compiler checks
that that will give you, without worrying about some bizarre const problem giving you trouble.

14

1.5 Computer science parameter-passing terminology

One last remark needs to be made, this one on definitions. When speaking of programming
languages in general, there are usually two types of parameter-passing concepts that people
speak of: pass-by-value (the original argument used to assign a parameter cannot be changed
from inside the function) and pass-by-reference (the original argument used to assign a parameter
can be changed from inside the function). The concept illustrated in our first example was pass-
by-value. The second technique is pass-by-value from the standpoint of the pointer parameter
itself, but with respect to the item the pointer points to, it is a pass-by-reference technique, since
you can change the value of what is pointed to from within the function (as we did in example
2). Likewise, the third technique — the use of reference variables — can also allow us to change
the value of an original argument to a function from within the function, and so it, too, can be
considered a pass-by-reference technique.

So, when we talk about “pass-by-value” and “pass-by-reference” in the general “theory of
programming languages” sense, we would have to say that method 1 is “pass-by-value”, and
methods 2 and 3 are both “pass-by-reference”. And so to make it clear what method we are
referring to, if you wanted to be precise you could call the three methods:

1. pass-by-value
2. pass-by-reference using pointer variables

3. pass-by-reference using reference variables

If you use those descriptions, then it is clear that methods 2 and 3 are both “pass-by-reference”
methods, in the language-theory sense of “pass-by-reference”. And yet we can also tell the two
apart, also based on their description.

However, usually we are not too concerned about corresponding with exact language-theory
definitions, and instead simply want to be able to tell one method from another. So, the
shorthand we already used, namely

1. pass-by-value
2. pass-by-pointer
3. pass-by-reference

will serve us well enough. Just keep in mind that there are really more accurate descriptions for
those last two techniques that match better with the formal theory terms for parameter-passing
techniques.

15

