(CS225 : Data Structures and Software Engineering
Pointers and Memory

Jason Zych

(©2001, 2000, 1999, 1997 Jason Zych

Chapter 1

Pointers and Memory

1.1 The layout of real memory

Part of the goal of high-level programming languages is to hide the low-level details from you.
The first programmers had to write programs using only 0’s and 1’s, and directly manipulated
the values stored in hardware. But, over the years, we have created better and better languages
with with to express instructions to the computer (and, of course, along with those languages,
we had to create the tools — compilers — to translate those languages to the 0’s and 1’s which
were still the only thing that the hardware could understand). These days, there is often no
need to directly manipulate hardware. Our programming languages allow us to think in terms of
“variables”, and recently, “objects”. Yes, we know that behind the scenes, data is being stored
in memory, in the form of strings of bits, but we prefer to think in terms of variables and objects
when writing software, and would generally like to ignore the idea of real memory entirely, in
favor of abstractions that are more closely tied in to the problems our software is supposed to
solve.

However, there are times when having knowledge of, and access to, real memory could
be helpful, primarily because by directly manipulating memory, we can sometimes make our
programs faster or make them take up less memory overall. The ability to handle those times
is one of the things that distinguishes C++ from Java — in C++, we can directly manipulate
memory. We don’t have to...but we can if we want to.

So, let’s move beyond our standard abstractions and take a look at actual memory for a
moment. You will learn more about the particular hardware details in courses such as CS231
and CS232, and you will learn more about the details of compilation in CS326 if you get a chance
to take that course. What follows is certainly a simplified description of how things really are,
and the vast majority of the information in these first two sections is NOT something you need
to know for this course. We present it here briefly because having a basic understanding of
memory and compilation will help you to better understand the memory manipulation topics
we are about to discuss. If you want, you can skip ahead to section 2.3 and refer back to this
section or section 2.2 only if you get confused or want to know a bit more information.

The collection of memory in a computer can be thought of as an array of “cells”. Each cell
contains a collection of bits (in today’s machines, a typical cell is 32 bits long) that together
represent some kind of data. Each cell also has an address. This is why the array analogy is
appropriate. Just as a Java array is a collection of individually numbered cells (see Figure 2.1),
the memory in a machine is also a collection of individually numbered cells (see Figure 2.2).

3

AW NN = O

997
998
999

Figure 1.1: A 1000-cell array in Java (or most other languages)

0 |— 32 bits—
1 |— 32 bits—
2 |— 32 bits—
3 | — 32 bits—
4 |— 32 bits—

4294967293 | — 32 bits—
4294967294 | — 32 bits—
4294967295 | — 32 bits—

Figure 1.2: Physical memory, which strongly resembles an array. The collection of available
memory can be very large — the above memory “array” contains 232 cells

As you may remember from Java, some data types are less than 32 bits long, and so there are
times we want to access halves or fourths of a cell to get 8 or 16 bit memory pieces. For that
reason, we would actually also number the individual 8-bit pieces of a 32-bit cell, meaning the
numbers assigned to the start of 32-bit cells would be multiples of four. (See Figure 2.3.) Why
not just have 8-bit cells? Well, that’s an issue better left for CS232. For this discussion, we
will only use full 32-bit cells, but the above reasoning explains why our cell numbers will be
multiples of four instead of multiples of 1.

In an array, the individual numbers that refer to particular cells are called indices, but when
dealing with memory, the numbers that refer to particular cells are called addresses. So, in
Figure 2.3, the addresses of the cells are 0, 4, 8, 12, 16, etc.

In a real machine, of course, indices such as ‘4”, “12”, or “28” are meaningless; everything is
handled with 0’s and 1’s. That’s okay, though, because the hardware used to access memory can
simply represent values like “4” or “28” with binary numbers. The memory array is therefore
really indexed with sequential binary numbers (see Figure 2.4).

For simplification’s sake, we will use the notation a4 or a28 to refer to the bit patterns
representing addresses (see Figure 2.5). This makes our discussion easier, but keep in mind that
when we use an expression such as a4 or a28, we really mean some pattern of 32 bits whose
numerical value is 4 or 28, respectively.

(1)¢ i (@)

(U R e ©)
4 |— 32 bits—
8 |— 32 bits——
12|— 32 bits—
16 |— 32 bits—
.
[]

4294967284 | — 32 bits—
4294967288 | — 32 bits—
4294967292 | — 32 bits—

Figure 1.3: Memory that provides the ability to access 8-bit segments

0000...00000 | — 32 bits—
0000...00100 | — 32 bits—
0000...01000 | — 32 bits—
0000...01100 | — 32 bits—
0000...10000 | — 32 bits—

1111...10100 |— 32 bits—
1111...11000 |— 32 bits—
1111...11100 |— 32 bits—

Figure 1.4: Memory which is addressed via binary numbers, as in real life. Again, cell addresses
are multiples of four.

a0 |— 32 bits—

a4 |— 32 bits—

a8 |— 32 bits—

al2|— 32 bits—

al6|— 32 bits—
®

24294967284 | — 32 bits—
24294967288 | — 32 bits—
24294967292 | — 32 bits—

Figure 1.5: Our final “simplified” memory picture that we will use for the remainder of this
packet — and for most of our memory discussions throughout the semester

How the memory array is then accessed — and accessed quickly — is beyond the scope of this
course, but the simplified idea is that when the processor wants to use a particular location
in memory, it sends a collection of 32 bits over to the memory unit (see Figure 2.6). This bit
sequence is the address of some cell in memory. The memory unit compares that bit sequence
to the bit sequences which index its memory cells, and when it finds the match, that is the cell
that the processor wants (see Figure 2.7). The final step then depends on what the processor
wants to do with this cell. If it wants to read the value, then the 32 bits in this cell are sent back
to the processor (see Figure 2.8). If the processor wants to write to this cell, then it will also
have sent, along with the address bits, a collection of 32 bits to write into the cell, and those
bits will then be written into the cell, thus erasing the bits that used to be there.

AP 0| 0000..00
a4| 1110..01
Processor a8 0101...10
al2l 1100..11 |
al6 1001...10
[]
32-bit value L4
(represented in ’ i
diagram by al2)
is sent to memory 4294967284 | 1100...00
24294967288 | 0101...10
24294967292 | 1111..00

IR

Figure 1.6: Using the memory unit, part 1: The processor sends an address to the memory unit

al2 2 a0| 0000..00
? a4 1110..01
Processor ? @8] 0101..10
al2) q100..11
/ al6l 1001..10
. *
*
We have a match! . ®
a4294967284 | 1100..00
24294967288 | 0101..10
4294967292 | 1111..00

Wi

Figure 1.7: Using the memory unit, part 2: The memory unit finds which cell address matches
the address it was sent

_alz 7 40| 0000..00
7 a4 1110..01
Processor 2 a8 0101..10
: "al2 110011 [
al6 1001...10
. L]
The 32 bits at .]
memory address . .
al2 are what the
memory unit 24294967284 | 1100..00
sends out. 24294967288 | 0101...10
24294967292 1111..00
|
11 |

=Tl

Figure 1.8: Using the memory unit, part 3: Once a matching address is found, the value in the
cell at that address is sent back to the processor

1.2 Compiling a program

Since the programmer uses things like variable names and numerical values when writing pro-
grams, and the machine uses strings of bits, the compiler needs to handle the accurate translation
from one to the other. When the compiler creates the machine language instructions that will
eventually run on the processor, it has to create those instructions in such a way that the pro-
grammer’s requests — for memory allocation, array access, assigning a value to a variable, or
whatever — are correctly handled by the processor even though the processor has no way of
understanding the variable name n or the symbol “5”.
Consider, for example, the following snippet of code:

int n;
n =25;

As you know, the first line is a variable declaration, which reserves some “space” for an
integer value and calls that “space” n. On the machine level, though, the abstract notion of
“space” and the idea of “naming” a “space” (with the name n) do not apply. Instead, the only
ability the processor has in this regard is to write bit patterns into memory locations which are
addressed by other bit patterns.

If that is the case, then how does a program actually work? How does the compiler manage
to convey your ideas in the language of bit patterns? Well, the compiler needs to keep a large
table of all the variable names you are using. When you declare a variable — for example, when
the line int n; above is reached — the compiler enters the variable n into its variable table.
At the same time, a memory location is chosen for the new variable. So, for example, if the
compiler decided to store the value of n in the cell at address a48, then what would appear in
the table would be the pair:

(n, a48)

Then, any other time you used n in your program, the compiler would look up n in its table,
would see that it had decided to store n in the memory cell with address a48, and thus when it
began writing machine instructions, it would use a48 instead of n.

7

The same goes for any other declaration. If you had three more declarations,

int x, y;
float z;

then your compiler table might decide to allocate these three variables in the next three memory
locations after n, meaning your compiler table would look as follows:

(n, a48)
(x, ab2)
(y, ab6)
(z, a60)

The point here is that, while the program you write can be filled with occurences of the
variable name n, the machine code generated by the compiler will instead be filled with reads
and writes to the memory cell with address a48. Everytime the compiler sees n, it can write
a48 to the machine code file. And, the compiler can do this because it keeps that internal table
so that it can look up which variables correspond to which memory addresses.

This of course means that you, the programmer, don’t need to worry about assigning memory
addresses. You can just use abstract concepts — the ideas of variables such as n or x — and the
compiler deals with translating those ideas to actual memory locations. And, it also means
that the processor and memory unit don’t need to know “variable names”, since by the time
the program is ready to run on the processor, the compiler has already translated all of your
variable names to actual machine addresses.

This also means that your “variable names” cease to exist after compilation is finished. As
long as the compiler is running — as long as it is in the process of translating your code to machine
code — it needs to keep that internal table intact, so that it can look up variable names and
retrieve their corresponding memory addresses. But, once the machine code is completed, there
is no need for that “variable name” information anymore, because all the appropriate memory
address information has already been written into the machine code file. So, the compiler deletes
its table as part of the conclusion of the compilation processes. And, of course, if you decide to
recompile, the table must then be reconstructed when the compilation process is started again.

This “variable table” can hold more than just pairs, though. In fact, one other very important
piece of information it needs to hold is the type of the value. So, imagine our above table of
pairs as a table of triples instead, where the type is stored along with the variable name and
machine address.

(n, a48, int)
(x, ab2, int)
(y, ab6, int)
(z, a60, float)

Why is this type information important? Well, consider, for example, the 32-bit pattern
0100 0001 0110 1000 0000 0000 0000 0000

Imagine you have a variable someVar, and its corresponding address is a324, giving us the
following variable table:

(n, a48, int)

(x, ab2, int)

(y, ab6, int)

(z, a60, float)
(someVar, a324, 7777)

Notice we have hidden the type value. Now, imagine that the 32-bit pattern above is stored
in the memory cell at address a324 — that is, the variable someVar stores the bit pattern above.
What will the following statement (a print command in Java):

System.out.println(someVar) ;

print to the screen? Well, you know the bit sequence in the cell at address a324 is the value you
are dealing with, but in spite of that, you can’t fully answer the question because you don’t know
what the type of someVar is. If I told you that type, however, then you could correctly interpret
the bit pattern. For example, if I told you that the type of someVar — and hence the type of
the bit pattern — was the type int, then you could realize that the bit pattern represented the
number 1,097,334,784. If you happened to know the standard for representing floating point
numbers in collections of 32 bits (a CS232 topic), and I told you that someVar was of type
float, you could tell me that the bit pattern represented the floating-point number 14.5. But
you can’t tell me the answer until I tell you the type.

Likewise, the machine has no idea what value the bit pattern represents unless the compiler
tells it the needed type information. So, when the above output statement is translated to
machine code, the instructions the machine is given are not just, “go to machine address a324
and retrieve that value for printing”, but in addition, the machine is also given instructions
explaining how to convert that value to a readable form. In other words, when the compiler
tries to translate the above output statement to something the machine can understand, the
output statement is translated to one set of instructions if someVar is an int variable, and the
output statement is translated to a different set of instructions if someVar is a float variable.
The first set of instructions say “retrieve the value at machine address a324, and interpret and
print it via this procedure: <more instructions > so that the user views it as an integer”. The
second set of instructions say, “retrieve the value at machine address 324, and interpret and
print it via this other procedure <more instructions, but different than the ones in the first set>
so that the user views it as a floating point number”.

The compiler can only properly choose between the two sets of instructions if it knows what
kind of value is stored at a324. That is, it needs to know what kind of value is stored in the
variable someVar, i.e. it needs to know the type of someVar. But, as long as the compiler knows
the correct type, it can give the machine the proper instructions to handle the bit pattern, which
is why the machine doesn’t care what “type” the bit pattern is.

Read that last phrase again: the machine doesn’t care what type the bit pattern is. That
phrase is very important, because it means that for any type we can possibly conceive of, as long
as we can create a one-to-one mapping between values of that type and long strings of bits, and
as long as we can write a compiler that can understand that mapping and convert it to machine
instructions, we can represent that type in a computer. This applies not just to printing values,
but to simply using values in general (for multiplication, or initialization, or whatever), since
we ultimately need to convert them to bit patterns in order for the machine to work with them.

9

For example, the type double, as you may recall from Java, requires 64 bits of space. There
is a standard for converting double-precision floating-point numbers to patterns of 64 bits, and
converting patterns of 64 bits back to double-precision floating point numbers (again, to be seen
in CS232!). And, the Java compiler understands this conversion and can make use of it. This
means we can use the type double in our programs.

The same goes for any user-defined types in Java. Some user-defined types are only composed
of member data of built-in types, so converting those user-defined types to bit patterns and back
is simply a matter of converting the member data one by one. Other user-defined types have
member data whose types are also user defined types, but now you just have extra levels of
conversion — you convert this user-defined type to a bit pattern by converting its user-defined
member data to bit patterns, which you do by converting their member data to bit patterns, and
so on, getting more detailed until you are converting built-in types to bit patterns, something
the compiler knows how to do. Since all user-defined types are ultimately just collections —
possibly vast collections — of built-in types, you can use user-defined types in basically the same
ways that you use built-in types. This is why your own classes work with the existing language
as easily as they do.

So, that is how memory is set up in a machine, and how it is used as your program is
compiled and executed. This discussion is relevant because it is language-independent: though
the types and conversions may change, ultimately the same process goes on at the machine level
regardless of what language you are programming in. So, this means that when we program in
C++, the same kinds of things are happening inside the real machine.

Now, again, the details of these first two sections are not things you need to know for this
course. But, hopefully, having seen some of those details will make the following discussion a
little easier to understand, because some of the questions you might have otherwise had have now
been answered in advance. As long as you don’t talk about real memory at all — as you can do
when learning Java — you can get by just fine with abstractions such as variable names. However,
the moment you begin talking about real memory — as we will have to do when discussing C++
— you will naturally start to wonder how various language features are handled in real memory.
These first two sections have been our attempt to give you a brief introduction to how some of
the abstract ideas you learned in CS125 are handled “behind the scenes” in an actual machine
and by a actual compiler.

The ultimate goal of all this is to explain a single type in C++ that doesn’t appear in Java,
a type that gives us the knowledge of real memory and the access to real memory that we
spoke of at the start of this section — a type known as a pointer. We will be discussing pointers
shortly, but first there are some more basic things to go over. The following section is where the
“pointers and memory” lecture actually begins.

1.3 Java allocations versus C+-+ allocations

In Java, built-in types and user-defined types had separate allocation rules:

1. When you declared a variable of a built-in type (i.e. primitive type), via a statement such
as int n;, memory was set aside to hold an integer value, and you accessed that memory
by using the variable name n.

2. When you declared a variable of a user-defined type, via a statement such as Coord c1j;,
that merely created a reference, and you still didn’t actually have an object of a user-

10

defined type — i.e. unlike built-in types, variables of user-defined types did not actually
contain the space to store the data needed by the user-defined type. To get that space,
you needed to allocate an object, via the statement c1 = new Coord();. That statement
would allocate a new Coord object and set c1 to refer to it. Variables of user-defined types
contained only references to objects, not the objects themselves, and the objects had to
be allocated off a section of memory called the heap. (If you have forgotten a bit of this,
go back and reread pages 122 through 125 of your CS125 textbook.)

Note that this gives us two options — we can declare variables of built-in types, or allocate objects
of user-defined types. We are pointing this out for the purposes of contrasting it with C++. In
C++, you have four options:

1. You can declare variables of built-in types, just as in Java

2. You can allocate objects of user-defined types, via expressions such as new Coord();, just
as in Java

3. You can declare variables of user-defined types, which you cannot do in Java. That is, in
C++, you can make a declaration such as Coord c1;, and this declaration does not create
a reference. Instead, it sets aside enough memory to hold all the data a Coord object
needs, and then you can go ahead and manipulate that data via the name c1, without
having to perform any allocation using new.

This raises an interesting terminology question, in that this appears to be a variable (it has
a name and is created with a declaration), but is also an object (it has the space needed
for a user-defined type, and the values stored in that space will be values of a user-defined
type). For now, just accept that the terminology will get a bit murky, and focus on on the
ideas.

4. You can allocate “objects” of built-in types, something else you cannot do in Java. Again,
the terminology doesn’t quite match what you are used to, which is why we put the word
“objects” in quotes. But, the idea is that, just as you can use new to allocate the necessary
space for an object of a user-defined type, you can also use new to allocate the necessary
space for an “object” of a built-in type. The result would be expressions such as new int.

So, in C++, we have four separate options for generating pieces of memory for our use. Two of
them are familiar from Java (1 and 2) and two are not (3 and 4). Two of them involve built-in
types (1 and 4) and two involve user-defined types (2 and 3). And, most importantly for our
next topics, two of them involve simple declarations (1 and 3), and two of them involve the
use of new (2 and 4). What we will do now is examine real memory and how the above four
options are handled in real memory. We will deal with options 1 and 3 first, since those are both
declarations of variables and are thus related. After that, we will explore the C++ type known
as a pointer, which has some similarity to the idea of “references” in Java. Finally, will discuss
allocation options 2 and 4, which both use new and which both make use of something known
as dynamic memory.

1.4 Variables in real memory

Now that we have discussed the allocation possibilities in C++, let’s examine how variables in
C++ are stored inside physical memory. We will start with the memory layout in Figure 2.9,

11

where the rectangles are memory cells and the a44, a48,... markings to the left side represent
the memory addresses of the cells, i.e. the specific bit patterns used to access those specific
memory cells in the physical memory of the machine. (For more details, see section 2.1.)

ad4
a48
a52

al28
al32
al36
al40

a268

Figure 1.9: Our initial memory layout

Now, let’s consider a simple variable declaration:
int n;

The purpose of a declaration such as this is to set aside some “space” and name that “space”
with the variable name “n”. What really happens is that a cell is set aside in memory for this
new integer value, and the compiler keeps track of which memory cell we are talking about when
we refer to n.

So, let’s assume that the memory cell set aside to store the value of this particular variable
is the memory cell with address a44. There was no particular reason that the variable n had
to be located at a44; that’s just where we put it in this particular example. It could just as
well have been located at a48 or a268 or wherever else you might prefer. (Actually, there are
specific ways in which that choice is made when a real program runs, but we won’t be getting
into that in this course — instead we’ll just pick convenient locations and leave the discussion of
the actual location selection to CS326.) Figure 2.10 shows the results of this declaration in our
memory array.

Note that the variable n, and indeed, all variables, have the following properties:

1. A variable has a memory address, i.e., where the variable is stored.
2. A variable has a value, i.e., what is stored in the memory location.

3. Finally, a variable has a name, i.e. how this variable is referred to.

As you can see from Figure 2.10, our convention will be to write the name of a variable to
the right of the cell the variable is located in, and to connect the name to the cell with a dotted
line.

In our example above, the variable has the name n, and its memory address is a44. Note that
there is no value yet — we have not assigned one to the variable. This raises another convention

12

ad44 ? --q--n
a48
a52

al28
al32
al36
al40

2268

Figure 1.10: Memory with n declared

we will use, and also an interesting point. In Java, all built-in types (by which we mean only
the primitive types — int, float, etc — and not the library types) are automatically initialized
to default values when you declare them. In C++, they are not, so if you have not initialized a
variable, then it has some meaningless, “garbage” data stored inside it (because there has to be
some combination of electrons or lack of electrons inside the actual hardware). If we know that
the value of a variable is garbage data, we will notate it with one or more question marks (as
seen in Figure 2.10).
If after the declaration, we execute the assignment statement:

n =2>5;

then now our memory looks as it does in Figure 2.11, and our variable has value 5 in addition
to name n and memory address a44.

add %5 --9--n

a48
a52

al28
al32
al36
al40

2268

Figure 1.11: n is assigned the value 5

13

We could summarize this variable as follows, if we want:

Current status of the new integer variable:
WHERE it is located: a44
WHAT it now holds: 5
HOW we refer to it: n

The main idea here is that in both Java and C++ you have the ability to declare integer
variables — variables of type int — and assign values to them. Inside memory, the scene appears
as in Figure 2.11. Upon declaration of an integer variable, a specific cell is set aside for an
integer value, and that cell is assigned the variable name that you selected (this “assigning of a
name” is done by the compiler — see section 2.2).

Where C++ differs from Java is that if you make an ordinary declaration of a variable of a
user-defined type:

Coord ci;

then in C++ this produces an object. In Java, c1 would only be a reference of type Coord, and
you would still need to use new to allocate an object for the reference to refer to. But in C++,
the above decaration sets aside memory cells for the entire Coord object, not just a reference.
There is no need to use new; the object is already allocated, and it is named c1.

But, if c1 takes up space for an object, and not just a reference, the natural question is, how
much space does it take up? When we declared an integer variable, it took up 32 bits — one cell.
How many cells does an object of class Coord take up?

WEell, behind the scenes, an object simply needs space for its member data. The class Coord
had two member variables, and each was of type double. Since double takes up 64 bits — twice
the size of an integer — and since we have two of them, we expect that an object of type Coord
needs 4 cells, two to represent the first double, and two to represent the second double. The
result of this variable declaration is shown in Figure 2.12.

ad4 5 --9--n

a48

as2

al28

al32 4{ i F -{-.c¢cl
a1364 9 F

al40

2268

Figure 1.12: Memory after c1 is declared. The first two cells work as a 64-bit unit to store the
first double, and the second two cells likewise work together to store the second double.

We know from both our declaration and from Figure 2.12 that the name of the variable
taking up the four cells a128, al32, al1l36, and al40 is c1. And, since we have not initialized

14

this variable yet, we know it has a garbage value. However, it seems a little unclear what the
memory address is. After all, c1 takes up four cells, al28, al32, al36, and al40. Are they
collectively the memory address? Can an object have four (or more) different addresses? Or, if
only one is the memory address, which one is it?

Well, it is important to be able to refer to an object with a single address. Yes, the object
takes up many cells — four in the above case. However, when we talk about the “memory address”
of an object, we generally want to be referring to just one address, and so the convention is to
have the first address be the “official” address of the entire object itself. That is, the address
of the starting cell of the object is also the address of the entire object. In the above case, this
is al28, and so the memory address of c1 is a128. Whenever we have an object anywhere in
memory, the address of that object is the address of the first cell given to that object.

We still need to assign a meaningful value to this variable. Right now, c1 is not initialized,
and so it has a garbage value. To fix this, we need to call the member function Initialize(),
which as you recall will take two values as parameters and set the internal member data to be
equal to those parameter values. This member function can be called from the object in exactly
the same way as it is done in Java, namely by using dot notation. Simply list the object, followed
by a dot, followed by the member function you wish to call.

cl.Initialize(4.1, 5.6);

Now, the values 4.1 and 5.6 are stored in memory, and so our status for our Coord variable
is as follows:

Current status of the new Coord variable:
WHERE it is located: al28
WHAT it now holds: 4.1, 5.6
HOW we refer to it: cl

The result can be seen in Figure 2.13.

ad4 5 --9--n
a48
as2

aléS
al32 4 41 F “loel

6 s6 H

al40

2268

Figure 1.13: Memory after c1 is initialized

So, aside from the key difference that c1 is an object and not a reference, this is not really any
different than Java. You can declare variables of type int, and in doing so you create “space”
for int values and can read them and assign int values to those “spaces”. And, likewise, you

15

can declare varaiables of type Coord, and in doing so you create Coord objects, and can operate
on them in whatever way the Coord member functions allow. For int, of course, the functions
(such as +, %, and —) are built into the language. For Coord, the member functions are invoked
off the object name using dot notation, just as in Java. The only difference is that the variable
itself is the Coord object, rather than just being a reference to the object. Other than that, the
ideas are the same and your usage of the variables is not any different in C++ than it was in
Java.

1.5 Pointers

Now, we start to approach the other half of things. We’ve seen how in C++, int variables
are allocated exactly as they are in Java, and we’ve seen how, unlike in Java, we obtain Coord
objects, and not Coord references, when we declare Coord variables in C++. The other half of
the issue is that, in C++, it is also possible to have “references” to Coord objects (just as in
Java), and to have “references” to int objects, which is something you could not do in Java.

C++ does indeed have something called a reference, but that is not the same as the “refer-
ence” we referred to in the previous paragraph. In this context, the feature in C++ that best
compares to a reference in Java is a feature known as a pointer. In Java, you didn’t have a
type called reference; rather, each user-defined type (or library type, i.e. non-primitive type)
in the language could be referred to by a reference of its own type. If you made the declara-
tion Coord c1;, you created a Coord reference that could then be used to refer to an object
that you allocated using new. But, that had to be a Coord object. That is, the statement
Coord cl = new Coord(); was acceptable, but even if you happened to have defined a class
Coord2 as well, the statement Coord c1 = new Coord2(); would not be acceptable. A Coord
reference could refer to a Coord object, but not to a Coord2 object.

So, in a sense, each user-defined type in the language had its own corresponding reference
type. (Actually, since Java has an extensive built-in library, keep in mind that everything we
say for “user-defined” types also applies to all of the library types.) Likewise, in C++, there
is a pointer type corresponding to each different type in the language. But, just as all Java
references basically behave the same way, in C++ all pointers basically behave the same way.
The only difference between two Java references is the type each reference is associated with,
and likewise, the only difference between two C++ pointers is the type each pointer is associated
with.

Below is an example of the syntax for declaring a pointer variable:

int* numPtr;

Like any other variable declaration, in the declaration above we simply have a type followed
by a name followed by a semicolon. However, note that this is not a declaration of an int
variable, due to the asterisk in the declaration. The type in the above declaration is not int, i.e.
“integer”, but rather int*, i.e. “integer pointer”, or alternatively, “pointer to integer”. The int
and the asterisk together are the name of the type. (You can see the results of this declaration
in Figure 2.14.)

The variable numPtr is a pointer variable, just as n is an integer variable. And, like all
variables, it has a location in memory, it has a name, and it has a value.

16

a44 5 --94--n
a48
a52

a1'284 4.1 F

al32 -1-.¢l
al36

e 56

a268 = T- - =" numPtr

a272
a276

Figure 1.14: Memory after numPtr is declared

Current status of the new pointer variable:
WHERE it is located: a268
WHAT now holds: ??7?
HOW we refer to it: numPtr

The special feature of a pointer is the type of value it holds. Variables of type int, of course,
hold integer values. Variables of type float hold floating-point values. Variables of type char
hold characters. What pointers hold are memory addresses. That is, the bit patterns held in
memory for pointer variables are not interpreted to be integers, or floating-point values (see
section 2.2), but instead are interpreted to correspond to the bit patterns we use to address
other cells in memory! For example, after the declaration above, we could have the statement
numPtr = a48!. This statement writes the memory address a48 (that is, the pattern of bits
that you would use to access cell 48 of the memory array) into the cell named by the variable
name numPtr (See Figure 2.15).

Current status of the new pointer variable:
WHERE it is located: a268
WHAT it now holds: a48
HOW we refer to it: numPtr

The important idea to start off with here is that, from a storage point of view, pointer
variables are really no different than variables of any other type. A pointer variable still has:

!Please note that this would not actually be a legal C++ statement, simply because the expression a48 does
not represent an address in C++. We are using expressions such as a48 or a60 in these notes simply as a
notational convenience, but in reality address values are printed out in hezadecimal notation (ex.: Oxeffff9e8),
and hard-coding addresses into assignment statements requires casting integer values to addresses (ex.: intPtr =
(int *) 5;). However, there is generally no reason to hard-code addresses into assignments, and we will certainly
not be doing so in this course. We are just doing it momentarily at this point in the notes, in order to gracefully
lead into the types of expressions we will really be using.

17

a44 5 --94--n
a48
a52

a1'284 4.1 F

al32 -1-.¢l
al36

e 56

2268 a48 -+ ---- numPtr

a272
a276

Figure 1.15: Memory after numPtr is initialized

1. a memory address — the above pointer variable is located at cell a268
2. a value — the above pointer variable now holds the value a48

3. and a name — the above pointer variable is called numPtr.

Pointers just happen to hold values of a different type than you are used to. Instead of
integer values or floating point values or collections of such values (as with the class Coord),
pointers hold addresses of other memory cells. That’s the only real difference. When you read
the bit pattern

0100 0001 0110 1000 0000 0000 0000 0000

in a memory cell represented by a pointer variable, you don’t read it and think “this is the
integer 1,097,334,784” , and you don’t read it and think, ”this is the floating point value 14.5”;
instead, you read it and think, “this is the address a1097334784, which is the address of a
memory cell far downward near the bottom of the array.”

So, if that’s the only real difference, why make a big deal about pointers? Well, the reason
pointers are useful is because of what can be done with their values. The values of other variable
types — values such as 5, 4.2, or ‘x’ — are just numbers and characters that are relevant to us, but
not particularly relevant to the machine architecture. However, a memory address is not just
some value that the user is concerned with, but in addition it is an actual index into the physical
memory array. For example, since numPtr holds the address a48, it is possible to read the value
of numPtr, and once we have that value, a48, we can use it as an index into the physical memory
array, and retrieve the value located at the address a48!.

Since all pointers hold memory addresses, the values stored in pointers can be used as memory
array indices to retrieve other values, just as in Figure 2.15, where the value in numPtr could be
used to retrieve the value in cell a48 even though numPtr itself was stored at a268 which was
nowhere near a48. The values of pointers are the addresses of other memory cells.

Well, so what? a48 is empty. Yes, this is true, but numPtr didn’t have to hold a48. What
if we assigned it to instead hold the value a44? Now, the memory address that is the value of
numPtr happens to be the same memory address that is the address of n (see Figure 2.16).

18

a44 5 --94--n
a48
a52

a1'284 4.1 F

al32 -1-.¢l
al36

e 56

2268 a44 -+ ---- numPtr

a272
a276

Figure 1.16: The value of numPtr is the address of n

Now, instead of using a (pseudocode) statement such as
print the value stored in n;
to print the value in n, you could use a (pseudocode) statement such as

print the value in the cell
whose address is stored in numPtr

and the machine would go to a268 (the cell indicated by numPtr, read the value there (a44), and
jump to the cell addressed by that value (i.e. jump to the cell with address a44) and access its
data. We would now be accessing the data in cell a44, without ever making use of the variable
name n at all.

Now, there is no particular reason to avoid using the variable name n, but in general, it can
be quite useful to access one piece of memory by storing its address elsewhere, as a value in
some pointer variable. This is similar to Java, where it was helpful (and necessary!) to refer to
objects by way of references to them.

But what we still need is an actual way of making the switch from “pointer variable that
holds this address” to “memory cell that is located at the address which our pointer variable
held as a value”. Up to this point, we have simply said, “read the address stored in this pointer
variable and jump to that cell”. But how do we do this? What language syntax supports this
idea? What we need is to have operations in the language that would handle this, operations
that mean things like “go to the address that is the value of numPtr”. And, in fact, C++ does
indeed have two operations that allow this entire concept to work. These operations are:

1. The “&” operator, which means “address of”, and

2. The “*” operator, which means “dereference”

Let’s look at the “&” operator first. This symbol means different things in different contexts.
The context we are concerned with here is the one in which the & symbol appears before a
variable name on a line of executable code. (One example of a different context would be when
the & symbol appears after a type name in the parameter list of a function header. We will

19

look at that context later.) When the & symbol appears before a variable name on a line of
executable code, it means “address of”. For example, the statement:

numPtr = &n;

is translated as “the variable numPtr is assigned as its value the address of the variable n.” Since
the address of n is a44, this statement is equivalent to

numPtr = a44;

The “address of” operator saves us from having to hardcode real memory addresses into the
program. This is especially useful when it comes to typechecking in the compiler. The value
ad4 by itself is just a memory address; any pointer could be assigned to hold it. But, if we use
the address operator, then the compiler can make sure we are assigning the addresses of a type
only to pointers to that type. That is, the assignment numPtr = &n; would be okay, since we
are getting the address of an integer variable and storing it in a variable that was declared to
be storage for integer addresses. However, if we tried to execute the statement numPtr = &ci;,
then the compiler would realize that we are trying to assign the address of a Coord object to
a variable designed to hold addresses of integers. Since this is wrong, the compiler could let us
know we had made a mistake. It is much harder for the compiler to detect this mistake if we
use a statement such as numPtr = al28.

The second operator used with pointers is the operator. Again, this symbol means
different things in different contexts — certainly at times it refers to multiplication! — but when
placed before a pointer variable name on a line of executable code, it means “dereference”,
or more completely, “return the object at the address stored by this pointer variable” (where
“object” here refers to any allocated memory chunk, whether for a user-defined type or for a
built-in type). For example, if the variable numPtr holds the address a44, then the expression:

Gk

*numPtr
will return the object addressed by a44. So, the statement:
*numPtr = 6;

will first dereference the pointer variable numPtr to obtain the object at address a44, and then
will assign the value 6 to that object. The end result is that, provided we have previously
executed the statement numPtr = &n that we dicussed above, the following two statements:

*numPtr = 6; AND n=6;

are ezactly equivalent. The second writes 6 to the cell named n, which is the cell with address
ad4. The first writes 6 to the cell whose address is the value stored in numPtr, and that value
is a44. The two statements mean the exact same thing (see Figure 2.17).

In fact, it should be clear that the & and * are inverse operations, meaning:

e (*(&n)) is equivalent to n, and

o (&(*numPtr)) is equivalent to numPtr

20

a4 |65 --q9--n
a48
a52

a1'284 4.1 F

al32 -1-.¢l
al36

e 56

2268 a44 -+ ---- numPtr

a272
a276

Figure 1.17: The command *numPtr = 6; first dereferences numPtr, which gives us the object
located at numPtr’s value — i.e. the object at a44. Then, 6 is assigned to that cell at a44.

We can declare pointer variables of whatever type we want. The following code:

Coord* cAddr;
cAddr = &cli;

will set aside space in memory for a new pointer variable, and that pointer variable will be one
which holds the addresses of Coord objects. Then, the code finishes after the second line, which
assigns as the value of cAddr the address of c1 (see Figure 2.18).

Current status of the new pointer variable:
WHERE it is located: a276
WHAT it now holds: al28
HOW we refer to it: cAddr

add 6 --4--n

a48

a52

al28

al32 4 41 F 1ol
al36

e se H

2268 a4 -+ ---- qumPtr
a272

a276 al28 ------ cAddr

Figure 1.18: Pointer to objects of type Coord

21

1.6 Stack Memory

Our picture of memory so far is accurate, but incomplete. There are actually two different types
of memory available to us, and up to this point, we have only dealt with one of them. In this
section, we will give some more detail about this first type of memory, and in the next section,
we will discuss the other type of memory. As with the earlier memory discussion (section 2.1),
the discussion of memory here will be simplified somewhat, but it is accurate enough for our
purposes.

On one end of the memory array, you have stack memory. This memory is also known as
local memory, since it is the memory used to store local variables. The stack memory is so called
because this is the memory used to implement the “function stack”. In order to understand this,
it is necessary to give a small introduction to how function calls are implemented in a computer.

Imagine that you are in your “start function”, which in both Java and C++ is called main ().
Furthermore, imagine that the first few lines of the function main() are as follows:

int main()

{
int i, j;
i = 20;
FunctionA(i);

(Functions in C++ can be global — i.e., standing alone rather than being a member of any
particular class. That is why FunctionA can be called above without involving a class or object
of some sort in that function call.)

Further, imagine the first few lines of FunctionA are as follows:

void FunctionA(int x)

{
int k;
FunctionB(x);
FunctionC();

And, perhaps the first few lines of FunctionB are as follows:

void FunctionB(int n)

{

When you first start the program, space is set aside at the beginning of stack memory for the
information of the function main. This “information” includes things like local variables, so the
local variables i and j will be in this memory. This space in memory, where all the information

22

for a function is stored in one place, is known as a stack frame (see Figure 2.19). (We are not
really going to get into the details of stack frames other than to just think of them as “boxes of
information”, and in fact I would rather not even have to use the actual technical term “stack
frame”, except that it is convenient to call these “boxes of information” something, and if we
are going to call them something we may as well call them by their correct name.)

ad 20 ---i
o I
;182 : Jood-- main()
other stuff

Figure 1.19: The stack frame for main

Now, we are currently in main and are about to jump to FunctionA via a function call,
meaining we are leaving main and won’t be returning to do any more work in main until we are
finished with FunctionA and have returned from it. So, right where the stack frame for main
leaves off, we can build another stack frame, this one for FunctionA. We don’t need to worry
about the stack frame for main now having no room to expand, because by the time we are
ready to return to main, we will be finished with FunctionA, and so the stack frame we are
creating for FunctionA could then be removed to make more room for main’s stack frame to
expand. (More on that in a bit.) What do we store in the stack frame for FunctionA? Well, the
first thing we store will be the parameters passed to FunctionA, but after that we would store
local variables and other information for FunctionA, just as we did for main (see Figure 2.20).

a4 20 ---1
a8 ? i .
-1~ - main
a1.2 other stuff 0
--l-X
--l--k -F - FunctionA()
other stuff

Figure 1.20: The stack frame for FunctionA is added

Finally, FunctionA calls FunctionB, which means that for the moment we are leaving

23

FunctionA and we know we won’t be adding anymore information to FunctionA’s stack frame.
So, right where FunctionA’s stack frame leaves off, we create a stack frame for FunctionB, which
would contain its parameters, its local variables, etc. (see Figure 2.21).

a4 20 --F-i
8 ? -)
a2 ! -1-- main()
. other stuff
--1-X
----k - - FunctionA()
other stuff
--91-n
other stuff -~ FunctionB()

Figure 1.21: The stack frame for FunctionB is added

The idea is, as long as we are making function calls, we are building these stack frames for
each function. This would be bad — we’d eventually run out of memory — except for the fact
that eventually we erase these stack frames and reuse the memory. Specifically, we erase a stack
frame when we return from its function. So, for example, when we return from FunctionB, it
makes no sense to hold on to the information in FunctionB’s stack frame. After all, FunctionB
is done! So, when we return from FunctionB, we return back to FunctionA. And, likewise, at
the same time we will erase FunctionB’s stack frame, and return our attention to the end of
FunctionA’s stack frame (see Figure 2.22).

a4 20 --F-1
A e T
31.2 other stuff
—-1-X
----k -} - FunctionA()

other stuff

Figure 1.22: The completion of FunctionB results in the erasing of FunctionB’s stack frame

When we then call FunctionC from FunctionA, the same thing applies. When we call
FunctionC, a stack frame is created for FunctionC (Figure 2.23), and when we return from
FunctionC, we erase FunctionC’s stack frame and return our interest to FunctionA’s stack
frame (Figure 2.24). Finally, when we return from FunctionA back to main, the stack frame for

24

a4 20 el el
a8 A -4~ - main()
a142 other stuff
--1-X
----kx -} - FunctionA()
other stuff
- 1 - FunctionC()
other stuff

Figure 1.23: The stack frame for FunctionC is added, writing over the memory where the stack
frame for FunctionB used to be.

a4 20 --F-i
a8 ? il - 1- - main()
31.2 other stuff
--1-X
----k -} - FunctionA()
other stuff
- 1 - FundonC()

Figure 1.24: The completion of FunctionC results in the erasing of FunctionC’s stack frame

FunctionA is erased, and we are left with only the stack frame for main (Figure 2.25), which is
finally erased when we exit the program.

That is the basic method behind how local information is stored and erased as function calls
proceed — when you call a function, a new stack frame is created for it, and when you return
from this function, that stack frame is deleted. Since it would be impossible to return “two levels
back” (for example, you can’t return to main from FunctionC, you have to go in reverse order —
i.e. you have to go back to FunctionA and then from there return to main), you know that you
will always build your stack frames one-by-one downward, and erase them in the reverse order.

Whenever you have a variable declaration in your code, that variable is allocated off the stack.
That is, the memory cell for that new variable is located in the stack frame for the function that
that variable is declared in. When we declared int k; in FunctionA, the memory for k was
located in FunctionA’s stack frame. Therefore, all variable declarations are by definition, local
variables. Some of them might have very long lives. For example, any local variable declared
at the front of main is going to last for the life of the program, since it won’t be erased until
the stack frame for main is erased at the end of the program. But, ultimately, all variables are

25

a4 20 ---1
8| 7 -
31‘2 other stuff

- 4- - main()

-I--F ionA()

Figure 1.25: The completion of FunctionA results in the erasing of FunctionA’s stack frame

destroyed when the function they were declared in reaches its end.

As a result, objects that are local variables — for example, the object we create with the
declaration Coord cl; — are often called local objects or stack objects. They are objects, but
they are also local variables, and the memory they take up is memory that comes from the
“stack memory” area. By the same reasoning, local variables of built-in types — such as the int
variable n produced by the declaration int n; — could also be thought of as local “objects” or
stack “objects”. The terminology is blurred somewhat, due to the similarity between the way
local variables of built-in types are handled, and the way local variables of user-defined types
are handled.

Now, take note of an important detail — when you leave a function, all of its information
is erased when the stack frame is erased. That is why local variables do not last beyond the
function call — they are erased from their memory cells once the function is over. In fact, the
stack frame for FunctionC was written to the same memory cells that were used to hold the
stack frame for FunctionB! We can do this because the values in FunctionB’s stack frame are
no longer accessible and no longer needed once FunctionB has ended, so there is no reason to
keep that information untouched, and it is okay to write over it with new information that is
relevant to the function we are currently in (as we do when we call FunctionC).

So, we can count on our local variables being destroyed when we exit a function. We know
it will happen. Therefore, it is quite dangerous to try and use local variables after we have
left their function. For example, imagine that our previous code for FunctionA and FunctionB
really looked like this:

void FunctionA(int x)
{
int*x k;
k = FunctionB(x);
¥k = 20;
FunctionC();
print xk; // pseudocode
// whatever other code might come next

26

int* FunctionB(int n)

{
int temp = 30;
// more code could be here
return &temp;

}

In our previous picture, the stack frame for main started at a4, but the other addresses were
not shown. Let’s now imagine that the stack frame for FunctionA starts at a64 and ends at
a100, and the stack frame for FunctionB — now with a local variable — starts at a104 and ends
at al132 (see Figure 2.26). Now, note that the return type for FunctionB was int *, and what
we returned was the address of the local variable temp of FunctionB. Since we are returning the
address of an integer, our return value matches our return type, which is “pointer to integer”.

a4 20 --F-i
8 ? - .
a: bo-q-- main()
- | other stuff
a60
a64 _-lox
: -]~ -} - FunctionA()
100 other stuff
alo4 -=-T-n
alo8 --4-temp |~ FunctionB()
other stuff
al32

Figure 1.26: We are preparing to return the address of temp

Once FunctionB returns, FunctionA would be given the address of this local variable of
FunctionB, and would store this address inside the variable k (see Figure 2.27). We could even
alter the value of this local variable, because having pointers that hold addresses means we can
directly manipulate the cells at those addresses.

But, what happens when we call FunctionC? Well, the stack frame for FunctionC gets set
up, and the memory at address al08 is claimed for FunctionC’s stack frame. And thus, when
FunctionC returns, the no-longer-used value that is sitting at address al08 is a value from
FunctionC. Qur value 20 is gone! So, when we try to execute the line print *k;, we do not
print the value 20, but instead we print whatever random value happens to be sitting in that
cell as a result of its use by FunctionC. Our data has been corrupted! (See Figure 2.28.)

Well, no, we shouldn’t exactly say that our data has been corrupted. It has been overwritten
due to a natural course of events within the machine. Since the machine has every right to do
this, we are the ones that are in the wrong. You should never return the address of a local
variable as the return value of the function you are leaving. It is inherently unsafe, because it
means you are giving the function to which you are returning an access to your local variables
that it should not have. You are allowing it to read and write to memory that could very easily
be written over by the next function call, and thus your program is relying on data that could
very easily and quite naturally be corrupted by the next function call.

27

a4 20 --F-i
5 L.
a? - Jod-- main()
- | other stuff
a60
a64 [
| alo8 --|-- k -} - FunctionA()
2100 other stuff
al04
al08 20 <— (former temp)
al32

Figure 1.27: FunctionA’s local variable k now holds the address (a108) of the former “temp”,
a local variable whose scope has ended. FunctionA has assigned a value to the cell at a108 via
the statement *k = 20;, but that cell can be claimed by the very next function call, and thus

the existence of the data that is stored there (the integer 20) could end at any time. This is
dangerous!

a4 20 --F-i
5 .
a§ - bo-q-- main()
- | other stuff
a60
a64 J
| al08 --|-- k -F - FunctionA()
100 other stuff
al04
2108 ? - - FunctionC()
- | other stuff
al28

Figure 1.28: When the stack frame for FunctionC is created, any information that we were
“lucky enough” to still have at address alO8 is now overwritten. If later, upon our return
to FunctionA, we try to access al08 through the pointer variable k, we will find that this
memory cell no longer holds the integer 20 that we expected it to hold, because the stack frame
of FunctionC wrote over that value. DO NOT pass back addresses of local variables, and DO

NOT attempt to use memory cells from the stack once the stack frames they were in have ceased
to exist.

28

Again — never return the address of a local variable. By the time you finish returning, the
function you return to will already hold the address of garbage data — and indeed, it will be
garbage data philosophically, even if you technically could mess with that memory cell for a bit
before calling the next function and writing over the cell. Do not fall into the trap of thinking,
“oh, I could be careful and not call a new function until I am done with this memory cell whose
address was returned to me”. If your program design requires that you play games like that,
you have a poor design and you should rethink it. It is never worth it to play dangerous games
like that and risk using data that could vanish at any time.

One more small and interesting note — due to some internal bookkeeping necessities (to be
seen in CS232), every function call uses up at least a bit of memory, even if you have no local
variables or parameters. This is why runaway recursion is so bad. If you don’t have some way of
ending your recursive function calls, you will allocate chunk after chunk of memory — one chunk
for each function call and thus one chunk for each stack frame — moving downward and using
up more and more memory until you finally reach the end and run out. You never have the
opportunity to erase these chunks before reaching the end because you keep recursively calling
functions without returning from any of them.

1.7 Dynamic Memory and new

There is also a second type of memory we can make use of, and it should be somewhat familiar to
you because you dealt with in Java as well, even if you didn’t discuss it in detail. This memory
starts at the opposite end of the memory array, it is called dynamic memory, and is given to you
whenever you use the command new in Java or C++. Cells allocated from this part of memory
are not erased when you return from a function, because this memory is not local to any specific
function. Rather, you can think of this part of memory as being a pile of cells from which you
can pull a group of cells to store some data, mark those cells as your own, and have them remain
marked as your own, storing your data, until you decide you are done with them. Because of
this idea of a “pile” of cells, this section of memory is often called the heap?.

Before we move on, we would like to note that the idea of “types of memory” is a completely
artificial distinction. To use an analogy, imagine that you have bought a desk that you intend
to put your books and homework papers on. The surface of the desk is basically the same from
end to end, and you could put various books and homework papers wherever you want — there is
nothing about the desk that, say, allows you to put a book in a particular spot but prevents you
from putting a homework paper there. However, you would probably prefer to use some kind of
organized system, rather than scattering things all over the desk. For example, you might put
all your books on the left side of the desk, and all your homework papers on the right side of
the desk. Or, you might do just the opposite. The point would be that you chose some method
and stuck with it for the sake of organization, not because that was the only way you could put
things on your desk. And likewise, all our memory cells are the same, but we find it convenient
to have one side be the stack for function calls and local variables, and to have the other side be
the heap from which to request memory cells using new. Using one side of the memory in one

Incidentally, the word heap has two different meanings in computer science. The first refers to dynamic
memory, and the second refers to a type of data structure implementation that we will discuss when we reach the
topic of priority queues. It’s just one of those quirks of history that the same term was used for two different ideas.
It should generally be clear from context which definition of “heap” we are using — and of course, we haven’t even
gotten to the second definition yet, so that makes things easier still. :-)

29

way, and the other side of memory in the other way, makes memory far easier to use than if we
had mixed both usages together and had stack frames mixed in with objects we created using
new.

That said, let’s examine how dynamic memory is actually used, by observing our memory
diagram as some sample code is executed on the system. We will step through the following
code, and take a look inside memory after each line is executed.

int* intPtrOne;

Coord *cPtrOne, *cPtrTwo; // the * must go before each variable
cPtrOne = new Coord();

intPtrOne = new int();

cPtrTwo = new Coord();

cPtrTwo->Initialize(2.3, 4.5);

cPtrOne = new Coord();

The first two lines of code are declarations of the type we already looked at in section 2.5,
and so in our first memory diagram (Figure 2.29) we have already set side the space for those
three variables. Notice that, since they are variable declarations, the memory we set aside for
them comes from the stack, as we have discussed earlier.

a4 ? _ —|- — intPtrOne

a8 2 - -] - cPtrOne
al2 ? ~ |7~ cPtTwo
al6

210448
al0452
210456
al0460
al0464
al0468
al0472
al0476
210480
al0484
al0488
a10492
210496
al10500

Figure 1.29: Our memory after the first two lines of sample code are executed

Now, on the third line, we are creating an object using new. Just as our variables were also
called “stack objects” or “local objects”, this object that we create using new is called a dynamic
object, and we say that we are allocating the object dynamically. The expressions using new on
lines 3, 4, 5, and 7 are all known as dynamic allocations. The word “dynamic” is used precisely
because these objects can live beyond the ending of the function that they were first created in
— that is how dynamic memory gets its name.

Figure 2.30 shows the result of this dynamic allocation. Four cells near the bottom of our
memory are marked by the system as being in use, and together they compose the new dynamic
Coord object. Of course, just as with the stack objects, this dynamic object is not initialized
yet — we have set aside the memory for this object, and nothing more.

Now is a good time to formally discuss the keyword new in C++. In C++, new is a function.
That is, when you execute the expression new Coord(), there is really a function new which is

30

a4 7 — _|- - intPtrOne

a8 [al0488 - -|- - cPtrOne
al2 2 ~ =7 = cPtr'Two
al6

al0448
al0452
a10456
al0460
a10464
210468
al0472
a10476
al0480
a10484
Z}ggg Ho? — this memory is now
210496 o 1 marked as being
210500 4{ }7 allocated

?

Figure 1.30: Our memory after the first dynamic allocation

being called. Without getting too much into the mechanics of it (since those are details you
really don’t need to know right now and they will only confuse the issue), the function new will
perform the following tasks, in order:

1. Dynamically allocate enough memory to store an object of whatever type comes after new.
In the above case, the type that comes after new is Coord, so new dynamically allocates
enough memory to store a Coord object.

2. (ignore this step) Call the constructor indicated. For now, don’t worry about this step —
we will come back to it when we talk about constructors. (That is when we will talk about
those parentheses after the type name, since they are related to the idea of constructors.)
But, I at least wanted you to know that there is a second step here — even if we are going
to ignore it for now — so that it won’t come as a surprise later on.

3. Return the memory address of the newly allocated object. Right before this step, new has
completed the work it needs to do with the memory it has dynamically allocated, and so
its final action is to return a value — the address of the first cell in the group of cells that
new has set aside for you.

So, our expression new Coord() ; sets aside the memory for a Coord object, does some other
stuff we’ll talk about later, and then returns the address of this new object. Of course, if we
don’t store that address anywhere, there will no longer be any way to retrieve the object — we
will simply have this dynamic object existing in memory but we won’t know exactly where. This
is why we want to take that value returned by new — the address of our new object — and store it
in a variable that is capable of storing an address. That is, we want to take the value returned by
new and store it in a pointer. The statement cPtrOne = new Coord(); does exactly that, and
so when this statement has finished executing, not only do we have a newly-allocated dynamic
object, but we have stored its address inside our Coord pointer variable, cPtr0One (as previously
seen in Figure 2.30).

Line 4 works basically the same way, except that we are dynamically allocating an int
“object”, rather than a Coord object. The result is seen in Figure 2.31 — we allocate one cell for
an integer value, and then store the address of this cell in the int pointer variable intPtrQOne.

31

Likewise, Figure 2.32 shows the result of the execution of line 5, which allocates another dynamic
Coord object and stores the address of this object in cPtrTwo.

wt [al0S84 — -] _ intPuOne
a8 | al0488 - -|- - cPuOne

al2 7 ~ ~7 = cPtrTwo

al6
al0448
alo4s2) |
aloas | | this memory is now
210460 marked as being
10464 allocated

al0468
al0472
al0476
10480
10484 7]
210488

210492 4{ ? }7
210496
210500 B ? H

Figure 1.31: Our memory after the dynamic allocation of an int “object”

a4 | al0484 _ _|_ _ intPtrOne
a8 | al0488 - -|- - cPtrOne
al2 al0468 - ~|= = cPuTwo
al6
210448
210452
al0456
210460
al0464
al0468 this memory is now
9
210472 B i H marked as being
al0476 llocated
9 allocate
210480 4{) }7
10484 7]
210488
9
a10492 4{) }7
210496
9
a10500 4{) }7

Figure 1.32: Our memory after the dynamic allocation of the second Coord object

Line 6 is a little more interesting, but not as bizarre as it first appears. In Java, you used refer-
ences (created by declarations such as Coord c1;) to refer to objects, you used new to allocate the
objects (via statements such as c¢1 = new Coord();), and member functions of an object were
called by using the dot notation, resulting in statements such as c1.Initialize(2.3, 4.5);.
In C++, a declaration such as Coord c1; produced the actual object, and not simply a reference
to one. Therefore, there was no need for new. However, the syntax to invoke a member function
remained the same; you could still invoke an object’s member function using the statement
cl.Initialize(2.3, 4.5);.

However, in C++, we can also have pointers to objects, and thus we would like a syntax for
calling member functions by way of pointers to objects. We didn’t need two syntax forms in
Java, because we only had one way of calling a member function. We had to use a reference to
an object — and thus the dot notation — because we could not assign names to actual objects,
and thus all usages of a Java object — whether to call a member function of that object or to

32

do something else with that object — required that we access that object via a reference to it.
Whereas in C++, in addition to accessing an object via a pointer to that object, we can also
access an object directly, because we can assign variable names to objects. Java used the dot
notation when using references to obtain objects, but we can not use the dot notation in C++
when using pointers to obtain objects, because we already use the dot notation in C++ when
dealing directly with objects. So, what can we do?

The answer is that we need a new notation. This notation would take a pointer instead of
an object, but would still allow us to call a specific member function. That is, the syntax we
currently know in C++ is

(object) . (member function)
What we need is a syntax that works as follows:
(pointer to object)syntax(member function)

And, the syntax used in C++ is the “arrow notation”, i.e. the operator —=>. So, our syntax
for calling a member function when given an pointer to an object is:

(pointer to object)->(member function)
So, just as the statement:
cl.Initialize(2.3, 4.5);

took an object and called its member function, the statement
cPtrTwo—>Initialize(2.3, 4,5);

takes a pointer to an object and called that object’s member function. Furthermore, since we
can dereference pointers to get the objects whose addresses they hold, our statement above, with
the arrow notation, is ezactly equivalent to:

(*cPtrTwo) .Initialize(2.3, 4.5);

So, the arrow syntax is merely a shorthand for “dereference this pointer to get an object,
and then use the dot notation to call a member function of that object”.

Therefore, in line 6 all we are doing is calling the Initialize member function of the object
whose address is held by cPtrTwo, which is the object we allocated on line 5 using new. Since
Initialize is simply going to initialize the object in question, once line 6 is executed, the object
whose address is held by cPtrTwo now contains the values 2.3 and 4.5 instead of garbage data
(see Figure 2.33). (Note that we could also have used the arrow notation back in section 2.5,
when we were first assigning pointers to hold the addresses of local objects. The pointer doesn’t
need to hold the address of a dynamic object for this syntax to work; it can hold the address of
a dynamic or a local object.)

Finally, in line 7, we are simply doing one more dynamic allocation, and this dynamic
allocation works the same way the others so far have worked. The only quirk here is that we are
not writing the address of the new object to a new pointer — instead, we are writing over the
address currently stored in cPtrOne, which means that, even though we have a variable storing
the address of the newest dynamically allocated object, we no longer have any way of accessing

33

a4 [al0484 _ _]- _ intPtrOne

a8 al0488 - -|- - cPtrOne
al2 al0468 ~ ~|~ = cPtuTwo
al6

210448
210452
a10456
210460
al0464

Moan | 23
mosgo [45
210484 7]
o[%}
wosoo 7

Figure 1.33: Our memory after the Initialize call

a4 [al0484 _ _|_ _ intPtrOne
a8 | al0452 - -]- - cPtrOne
al2 al0468 ~ ~|~ = cPuTwo
al6
210448
al0452 9 this memory is now
al0456 i i H marked as being
al0460 9 allocated
a10464 4{) }7
al10468
aoar2[123
al0476
al0480 4{ 45 }7
210484 7]
al0488
210492 —H? H we no longer store
210496 the address of this
al0500 2 H object *anywhere*

Figure 1.34: Our memory after the last dynamic allocation

our original dynamically allocated object, the one located at a10488 (see Figure 2.34). Yes, it
is still in memory, but we don’t hold its address anywhere, and thus we have no way of reaching
it from inside our program. This object is “lost” to us. (We will discuss what to do with “lost”
objects shortly.)

If T were to ask you, “In a Java program, can I allocate an infinite number of objects?”,
you would instinctively know that the answer would be “no”, because there is of course only
a finite amount of memory. Now, you can see exactly what happens. With every call to new,
another piece of dynamic memory is allocated, and so we keep moving “upward” in memory as
we allocate more and more dynamic memory, until finally we run into the stack memory which
was on the other side of the memory array. And, even if there were no stack memory being used
we would eventually run into the other side — the “top” — of the memory array and we would
still have no more memory left to allocate. So, just as runaway allocation from the stack (i.e.
unstopped recursion) is bad, runaway allocation from the heap is bad as well.

Our earlier dereferencing works equally well here; the execution of the statement

(*¥intPtrOne) = 6;

34

begins with a dereference of intPtrOne, which will give us our recently allocated dynamic int
“object” (at address a10484 in Figures 2.31 - 2.34), since intPtrOne hold the address of that
“object”. Once that is done, you have a simple assigning of the value 6 to the dynamic “object”,
and the end result is that our new dynamic integer at address a10484 now holds the value 6
(see Figure 2.35).

a4 [al0484 _ _]_ _ intPtrOne
a8 al0452 - -|- - cPtrOne
al2 al0468 ~ ~|~ = cPuTwo
al6
210448
10452 5
210456 4{) }7
10460 5
a10464 4{) }7
210468
aloa2[1 23
a10476
al0480 4{ 45 }7
210484 6]
10488 5
al0492 4{) }7
210496 9
al0500 4{) }7

Figure 1.35: Our memory after the assignment of 6 to the dynamic integer

1.8 Garbage collection vs. delete

The last topic we need to deal with is the issue of “lost” objects, as seen in Figure 2.34. This
is an important topic, and this is because we do not have an infinite amount of memory. Let’s
imagine that the 13 dynamically allocated cells pictured in Figure 2.34 are all the dynamic
memory we have. (In real life, of course, you would have way more than 13 cells, but for the
sake of ease-of-explanation, we’ll keep our memory small for this hypothetical example. The
ideas and concerns are exactly the same whether the memory is small or large.) In addition,
imagine you wanted to dynamically allocate one more Coord object. Can you do it?

Well, as memory exists right now, you can’t. You have four dynamic objects allocated — the
Coord object at al0488, the int “object” at al0484, the Coord object at a10468, and the
Coord object at a10452. All 13 of your dynamic cells are allocated.

However, recall that the first object we dynamically allocated, the Coord object at al0488,
was “lost” to us. That is, even though it still existed in memory, we did not know its address
and we had no way of referring to it from the rest of our program, and thus we had no way
of using it any longer. By all rights, the four cells that this object takes up could be used for
something else and our program wouldn’t even notice that this object was gone. Such cells,
rather than being called “lost”, are generally referred to as garbage. So, our “lost” collection of
cells can be called a garbage object or garbage memory.

Unfortunately, the cells are dynamically allocated already and it appears there is nothing
we can do. Or perhaps there is. Let’s ask the question, "What does it mean for a cell to
be dynamically allocated?”. Yes, it means we have set aside memory to store values, but we
need to be a bit more specific. In particular, imagine that there is a “mark” on each cell in
dynamic memory. This “mark” can have the value “in-use” or the value “not-in-use”. When

35

your program first runs, all the cells are marked “not-in-use”, and whenever you dynamically
allocate a group of cells, part of what you are doing is changing the “marks” on those cells to
“in-use”. This “in-use” mark prevents the machine from giving a cell to a second object once it
has already given that cell to an earlier object. Once a cell is part of an object, that cell cannot
be given to any other objects until it is once again marked as being “not-in-use”.

So, it would seem that the secret to reusing this garbage cell is to somehow mark it as
“not-in-use”. This should be okay to do; after all, it isn’t in use anymore, so why not mark it
accordingly? The problem is, how do we do this? How do we mark a cell “not-in-use”? How can
we even tell that it isn’t in use anymore? That’s an important question, because we can’t very
well go setting these cell marks to indicate that the cell is no longer in use if, in fact, it still s in
use. That could lead to the same problem we had when we returned addresses of local variables
as we exited functions — namely, that we are trying to use memory that has been reclaimed by
the system and is now possibly being used for something else. That is always bad.

So, what we need is some sure-fire means of marking as “not-in-use” only those cells that
are indeed no longer in use. Then, the system can reclaim those cells (never mind how) and
allocate them again when another request is made for more dynamic memory.

It turns out that there are two overall methods of doing this, and Java and C++ each use
a different method. Recall that in Java, you may have used new quite a bit, and allocated
many different objects, but when you were done with those objects, you just forgot about them.
You moved on to other parts of your function, and forgot all about that lowly object that the
reference c1 referred to. Sure, maybe you set c1 to refer to a different object, rather than just
ignoring c1 entirely, but that still left the object that c1 originally referred to floating off in
space. What happened to the object after that? Well, you didn’t care. Your program didn’t
need it anymore, so you paid no attention to what happened to it. This is more or less what
happened to our first object above. We didn’t need it any more so we paid no attention to it.
So, in Java, it appears that we could end up with certain memory cells being eternal garbage,
because it doesn’t appear as if we did anything about our garbage values.

Actually, the truth is more interesting. What happened to that garbage memory was that
the Java interpreter eventually collected it, via a process known as garbage collection. A memory
management system, such as the one inside an interpreter, has algorithms at its disposal that
help it determine what memory is currently no longer being used and when it is okay to return
those cells to the pile of “cells that are free for use”.

A good-but-humorous analogy here is to think about a very young child. Imagine the child’s
parents are having company and have just cleaned the house. The child is young and oblivious
to the world, and might well be gleefully runnning around the house, pulling toys off the shelf to
play with and then quickly getting bored, tossing the toys over their shoulder, and running off
in search of more toys. Meanwhile, the exasperated parents are chasing after the child, picking
up the toys the kid left behind and putting them back where they belong. Now, this is not to
say all Java programmers are childish :-), but the analogy is useful in that you can think of the
Java interpreter as the parents. Your only goal in Java is to grab the memory and use it, and
once you are done, you toss it aside and forget about it, and the Java interpreter runs around
and collects it for you. “Collection” in this sense means marking the memory as “not-in-use”, a
marking that results in that memory being available for use by another dynamic allocation.

This method sounds reasonable enough. It also sounds pretty easy! Kick back, let the
system collect your garbage for you...why would C++ want to do something different? Well,
the problem with the earliest garbage collection algorithms was that they were reliable, but

36

inefficient. That is, though they made sure that you always had memory available to you to
use for new data (if there was in fact any not-in-use memory somewhere in the system to begin
with), there was work that needed to be done in order to collect some of your garbage memory.
It took processor resources that you might otherwise have preferred to use for running your own
programs. After all, the programmer knew exactly at what point the program was done with
a particular piece of memory and no longer needed it. Any type of automatic garbage cleaning
system is going to have to detect when a piece of memory is no longer needed, and however this
is done, some programming resources — time, memory, or both — will need to be expended to
acquire knowledge that the programmer already had.

So, went the argument back then, you know your program, you know the flow of logic, and
you know when it would be appropriate to take an “in-use” dynamically allocated object and
mark it as “not-in-use” once again. The system can’t know these things, it can only learn them
by means of various detection algorithms. And that learning process will take resources that
you might be unwilling to give up.

So, you may prefer instead use your knowledge to handle the releasing of memory yourself, via
direct instructions in the program to mark as “not-in-use” particular objects that were formerly
“in-use”. This is a process known as freeing memory or releasing memory or deallocating memory,
or, in C++ slang, deleting memory . When you take responsibility for freeing dynamic memory,
by deleting particular objects at particular times, the system will not need to consume resources
to detect this information and collect unneeded cells, and thus your program is bound to be
more efficient (or so the argument went back then...more on that in a bit).

However, this requires that you actually put those release instructions into the program, thus
making your job harder because you now need to do work that before you could avoid entirely.
In addition, you need to make sure you don’t miss an object or two. If you forget to delete a
dynamic object when you are done with it, then it just sits in the system, taking up memory.
There is no halfway here, and no safety net — if you tell the garbage collector to go away, and
attempt to handle releasing of memory yourself to save resources, then the garbage collector
leaves for good (after all, what would be the point of running it in the background? It would
defeat the purpose of doing it yourself) and you are responsible for deleting every last cell once
you are done with it. If you don’t, then you potentially end up with the runaway allocation
problem, just as if you had no garbage collector in Java. And even if the eventual problem isn’t
quite that severe, your program will certainly consume more memory than it otherwise should,
because it will need extra memory to hold all the extra objects that are garbage but are not
being freed. When a program produces garbage data that it doesn’t clean up, that program is
said to leak memory, and the failure to release the memory is a problem often referred to as a
memory leak.

So, that was the classic tradeoff. In some languages, dynamic memory was collected via
garbage collection. This made the programmer’s job easier, because it was no longer necessary
to explicitly think about freeing dynamic memory. This meant the programmer could spend his
or her time on implementing other parts of the design. In addition, it also meant that garbage
was definitely collected — there weren’t bits and pieces that were forgotten — because whatever
faults the garbage collector might have had, its one big strength was that it was very thorough.
Since the programmer can possibly make mistakes in this area, garbage collection was a way of
avoiding the problems caused by forgetting to release a particular object. Memory leaks aren’t
going to happen in a system that uses a correctly-written garbage collection process.

But, on the other hand, garbage collection was rather slow at the time, and it did things its

37

own way and — depending on the algorithm — might use some memory overhead as well. If you
didn’t want that background collection process slowing your software down, and if you didn’t
want any of your memory wasted with collection overhead, then writing the explicit instructions
to deallocate memory was the way to go. But, just as garbage collection had its disadvantages,
explicit deallocation also had its disadvantages — namely, it was harder to take care of explicit
deallocation than it was to just rely on the system, and also the process of explicit deallocation
is inherently more error-prone than garbage collection because it is a lot easier for you to forget
a deallocation than it is for the computer to run its algorithms incorrectly.

Since the early days, there has been a great deal of research into garbage collection systems,
and more recent algorithms have been designed in a much more intelligent way, to the point
where the overhead involved with garbage collection isn’t always all that much worse than the
overhead involved in just manipulating explicitly deallocated blocks. (That is, even manual
memory management takes some time behind the scenes for record-keeping and a bit of memory
manipulation; until recently, though, it was much less time than garbage collectors needed to do
their garbage collection work.) However, there is nothing to keep you from building a garbage
collection environment around a C++ program — that is, the freedom C++ gives you allows you
to choose whether to handle memory manually everywhere, or whether to plug in a garbage-
collection environment of your choice. You have access to the lower-level tools if you want them
— though you don’t always need them. So, though we will be dealing with explicit deallocation in
this course, keep in mind that — in keeping with the “you make the choice” theme of C++ — you
have the ability to build around your program whatever extra capabilities you might need, or to
install libraries for your program to use that provide those extra capabilities for you. The more
research into garbage collection that goes on, the more likely it is that choosing to compile such
a system in with your program might be a good choice. Fortunately, you have that choice. Our
focus here, though, will be on learning explicit deallocation, which is still a reasonable and/or
superior choice in many circumstances and which is important for you to understand.

So, how do we handle this “explicit deallocation” in C++7? It is done with the delete
operation. Just as new was a function, delete is a function as well. The usage of delete is:

delete ptrToObject;

That is, on a line of code you have the word delete followed by a variable that holds an
object’s address — i.e. followed by a pointer variable. What delete will then do is:

1. (ignore this step) Call the object’s destructor. Again, just as with new and constructors,
we will get to this step later on. For now, you can ignore it — but I did want you to know
it was there so it wouldn’t be a surprise later on.

2. Free all the memory that was granted to this object when it was allocated using new.

So, if you have a pointer objPtr to a dynamic object, you would use the statement delete objPtr;
to free the memory of that dynamic object. This action is often referred to with the phrase,
“calling delete on the pointer objPtr”, or just “calling delete on objPtr” or even simply “delet-
ing the object”. Regardless of the terminology used, the point is that you are marking that
memory “not-in-use” so that the system can once again put it in the “pile of cells available for
use”. If all dynamic objects are deleted once their use is over, then we will never have any “lost”
objects and therefore we will never “leak memory”.

Note, however, that when we execute the statement delete objPtr;, nothing happens to
the pointer itself!!!. This is very often a point of confusion with students, so take careful note of

38

it. When you call delete on a pointer, what you are doing is deleting the dynamic object whose
address is held by that pointer. You are not eliminating the pointer variable itself. In fact, after
the delete call, the pointer variable will still be holding the address of the now-deallocated
dynamic memory. For example, if the seven line code snippet we used in the dynamic memory
discussion (section 2.7) was changed to the following:

int* intPtrOne;

Coord *cPtrOne, *cPtrTwo;
cPtrOne = new Coord();
intPtrOne = new int();

cPtrTwo = new Coord();
cPtrTwo->Initialize(2.3, 4.5);
delete cPtrOne;

then immediately after the new line 7 (the delete call), the dynamic Coord object at a10488 has
been deallocated but the pointer cPtrOne still holds the address 10488. In addition, cPtrQOne
can still be used as a variable in all the same ways that it could be used prior to the delete call.
(See Figure 2.36.) Calling delete on a pointer variable does nothing to the pointer variable —
it merely deletes the object whose address was held by that pointer variable.

a4 [al0484 _ _|- _ intPtrOne
a8 | al0488 - -|- - cPtrOne
al2 al0468 ~ |~ = cPtr'Two

al6

210448
al0452
al0456
al0460
al0464

210468
aloar2[123 F}

al0476
atago [145
10484 7]
al0488 -

210492 b
210496 i These four cells have

210500 /"~ now been deallocated.

Figure 1.36: After the block of memory at al0488 is deallocated via the statement delete
cPtrOne;, cPtrOne itself still holds the address a10488.

If a pointer is storing the address of a now-deallocated object, as cPtr0One is in Figure 2.36,
as a general rule it is important to assign some other address to this pointer variable, rather than
allowing the pointer variable to continue to hold the address of garbage memory. If the pointer
variable’s scope is coming to an end — for example, if the pointer variable is a local variable of a
function and you are about to return from that function — well, in that case the pointer variable
is about to be deleted from the stack anyway, so you don’t need to worry too much about what
address it holds. But if the pointer variable is going to last for even some small time longer
in your system, it is preferable to assign a new address to this pointer, so that you don’t risk
forgetting later on that the address in this pointer variable is meaningless. If you forgot that,
you might end up dereferencing the pointer variable in an attempt to gain access to the object

it refers to, but the object it refers to no longer exists! And again, accessing garbage memory is
BAD.

39

What if we don’t really have any other reasonable address we could store in this variable? For
example, what if in the case of cPtr0One there were no more dynamically allocated Coord objects
whose addresses could be assigned to cPtrOne? We can’t just assign any random address to be
stored there, because we’d have to remember that there wasn’t really an object at that address,
and therefore we’d still have the same problem. Fortunately, in C++, there is a solution to
this problem. The value NULL in C++ represents a memory location that absolutely, positively,
can never hold an object. Usually, NULL is equivalent to a0; that is, usually the very first cell
in memory is set aside as the NULL cell and never serves any purpose other than to be a cell
that stray pointers can point to in a standard manner. However, NULL could be some other
cell, depending on what the system designers chose. The definition of NULL is implementation
dependent.

This would appear to mean that setting a pointer to NULL is okay, whereas setting a pointer
to 0 is not, because 0 is the bit pattern of all zeros, which is the address a0, and that address is
not necessarily the “null address” on all implementations. However, it is indeed okay to assign
the value 0 to a pointer if you want that pointer to hold the “null address”. This is because
the system interprets the symbol 0 to mean “null address” rather than “the bit pattern of all
zeros” when dealing with pointers. Or, in other words, when assigning 0 to a pointer variable,
the address that will get stored in that pointer variable is implementation dependent. It might
be the address a0, or it might not be. It will be whatever address is the “null address” on that
particular system.

So which is better, 0 or NULL? Or are they equivalent? Well, on most systems, they are
exactly equivalent. This would suggest that using NULL is nicer, because you can tell at a glance
you are dealing with pointers when you see NULL, whereas that is harder to do when you use 0.
(You will appreciate this benefit later.) However, on a few systems, NULL is defined in an odd
way that can cause problems with some code. So, assigning the value 0 to pointer variables is
always safe, whereas assigning the value NULL to pointer variables is only usually safe. We will
use NULL in this class, so that you have the additional documentation provided by the use of a
word rather than a number to aid you in understanding pointer code. However, keep in mind
that to be truly portable, you either must use 0, or else must redefine NULL in your code to be
equal to 0, thus overriding whatever oddity the system definition might have.

At the end of our code snippet above (the one with the delete call as line 7), we could have
added the following line as line 8:

cPtrOne = NULL;

and this would assign the value NULL to cPtrOne, so that the pointer variable would not hold
an address that was no longer the starting address of an allocated object. Note from Figure
2.37 that, since we can’t be sure from system to system which address is considered to be NULL,
our convention when drawing pictures of pointers that hold the value of NULL is not to write an
address into the cell, but rather to draw a slash through the pointer variable itself. The slash
indicates that this pointer has been set to NULL.

With the NULL value at our disposal, we have the tools we need to check for object existence
in our program. QOur programming discipline should be such that either a pointer holds an
address of a real object, or else it holds NULL. This allows checks such as the following:

40

a4 [al0484 _ _]_ _ intPtrOne

a8 = -]~ - cPtrOne
al2 | al0468 ~ ~~ = cPuTwo
al6

210448
al0452
al0456
210460
al0464

al0468

ala2 [T 23 1
al0476

atoago [T 45 1
a10484 7]
10488
10492

al0496
al0500

Figure 1.37: After the delete call, we can set cPtrOne to NULL. Note the slash through the cell
at a8, which graphically indicates that this cell holds the NULL address.

if (objPtr !'= NULL)
// do something with (*objPtr) here
else
// do nothing, since (*objPtr) doesn’t exist

As shown above, you can compare a pointer against NULL to determine if it holds the address
of a real object or not, and take the appropriate action in each case. Of course, you may wonder
how we know that any given non-NULL address is the address of a real object rather than the
address of garbage information (as the pointer cPtrOne is in Figure 2.36). And the answer is...we
don’t. However, we would like to assume that any pointer that does not store the NULL address
instead stores the address of a real object, and in order for that assumption to be correct, we
would have to always avoid the case where a pointer holds the address of garbage data. The
proper, disciplined use of NULL helps us avoid those kinds of errors, by allowing us to assign
a standard, agreed upon “empty pointer” address to pointers which would otherwise store the
addresses of garbage data.

1.9 A few final notes

1. When a pointer variable holds the memory address of an object, we often say that the
pointer variable “points to” that object. For example, in section 2.5 we could have said
that numPtr “pointed to” n, or, near the end of the section, that cAddr “pointed to” c1.
Likewise, we could have said in the previous section that cPtrOne pointed to a dynamic
object before the delete call was made. This is how we get the name “pointer”. The
conceptual picture is the same one you use when explaining the relationship in Java be-
tween references and the objects they refer to, and in fact we will often use exactly that
conceptual picture in our C++ discussions, rather than drawing the memory diagrams we
have been using up to this point. The memory diagrams are helpful when it comes to
learning exactly what is going on, because if you at least have that knowledge in the back
of your mind, many memory-related topics are easier to understand. But, when we sketch

41

out the pointer/object relationship, we often abandon the “real memory” diagrams and
use an abstract picture such as the one in Figure 2.38.

1) int* numPtr; numpPtr|_ |

-

numPtr|_

2) numPtr = NULL;
numPtr|_ Z‘

numPtr|_

3) numPtr = new int(3); ‘

Figure 1.38: Our typical abstract picture. (1) The pointer is a box with an arrow. Right after
allocation the pointer variable holds only garbage data — not a meaningful address — so the arrow
in our picture points off into space. (2) When the pointer holds the value NULL, that is shown
either by removing the arrow and putting a slash through the pointer box, as in the picture on
the left, or else by leaving in the arrow but pointing it to a box with a slash through it, as in
the picture on the right. (3) If a pointer holds the address of an object, that can be shown by
having our arrow point to a second box, which represents the object. Inside this second box, we
can store whatever values would be appropriate for the example.

2. Pointers are among the most frequent sources of errors in C++ programs. This is be-
cause, despite our best efforts, it is relatively easy to introduce defects into code which
cause a pointer to hold an address where no object exists. The run-time errors known as
segmentation faults and bus errors are related to the problem of trying to access an
object via the address stored in a pointer when there is only garbage at that address. Be
very careful when coding routines involving pointers.

3. Make sure you use addresses when appropriate and objects when appropriate. For example,

if you have three integer pointers, myIntPtrl, myIntPtr2, and myIntPtr3, and each one
points to a different integer, you cannot add the integers with the expression:

myIntPtrl + myIntPtr2 + myIntPtr3

The above expression will attempt to add the memory addresses. If you want to add the
integer objects, you must de-reference the pointers to get those objects:

(*myIntPtrl) + (*myIntPtr2) + (*myIntPtr3)

42

This is a relatively simple example of this problem; you will encounter more complex
examples throughout the semester. Basically, if the operations you are about to use are
operations that work on objects instead of pointers, make sure to remember to dereference
the pointers to get the objects, rather than incorrectly applying the operations to the
pointers.

43

44

