Announcements

MP3 available, due 2/24, 11:59p.
Exam3: 2/26-2/28

Stack array based implementation: (what if array fills?)

Analysis holds for array based implementations of Lists, Stacks, Queues,
Heaps...

General ldea: upon an insert

(push), if the array is full, create a
larger space and copy the data into it.

X‘X‘X‘X

Main question: Wwhat's the
‘ ‘ ‘ ‘ ‘ resizing scheme? We examine 2.

Stack array based implementation: (what if array fills?)

How does this scheme do on a sequence of n pushes?

Stack array based implementation: (what if array fills?)

How does this scheme do on a sequence of n pushes?

Summary:
Linked list based implementation of a stack:

Constant time push and pop.

Array based implementation of a stack:

time pop.

time push if capacity exists,

Cost over O(n) pushes is for an AVERAGE of
per push.

Why consider an array?

Queues:

M

Queue ADT:
enqueue
dequeue

iISEmpty

Queue—linked memory based implementation:

N8| T 13| T 6| T 14

template<class SIT>
B Which pointer is “entry” and which is “exit”?
public:

// ctors dtor

bool empty () const;
vold encuene (const STT & @) What is running time of enqueue?
SIT dequeue () ;

private:

struct queueNode { What is running time of dequeue?
SIT data;

queueNode * next;
}i
queueNode * entry;
queueNode * exit;

int size;

Queue array based implementation:

template<class SIT>

class Queue {

public:
Queue () :capacity (8),size (0) {
items=new SIT[capacity]
~Queue (); // etc.

bool empty () const;

c

volid enqueue (co

SIT dequeue()

private:
int capacity;
int size;

SIT * items;

enqueue(3);
enqueue(8);
enqueue(4);
dequeue();

enqueue(7);

dequeue();

enqueue(2);
enqueue(1);
enqueue(3);
enqueue(d);
dequeue();

(
(
(
(
(
(
dequeue();
(
(
(
(
(
(

enqueue(9);

Queue array based implementation:

template<class SIT>
class Queue {
public:
Queue () ;
~Queue () ; // etc.
bool empty () const;

void enqueue (const SIT & e);

SIT dequeue()

private:

int c

int s
SIT * items;
int entry;
int exit;

// some other stuff..

exit

|

[[] Imloln

enqueue(m);
enqueue(o);

enqueue(n);

enqueue(d);

enqueue(a);

enqueue(y);
enqueue(i);
enqueue(s);

(

(

(
dequeue();
enqueue(h);

(

enqueue(a);

