Today’'s announcements:

T -
NG/

o — - — e g — o "
S £ i e e I e
3355 e P e e

e s < S
7 | cne o

Yy LYy & N

N T ——

This image reminds us of a , Which is one way we can implement

ADT . whose functions include and
, with running times

(min)Heap: buildHeap

template <class T>
vold Heap<T>::buildHeap () {
for (int i=parent(size);i>0;1i--)
heapifyDown (1)

VANEEVAN
FAYAY!

(min)Heap: buildHeap Thm: The running time of buildHeap on an
array of size n is

A :
/ \ Instead of focussing specifically on running
B E

time, we observe that the time is

/ \ / \ proportional to the sum of the heights of all
L D H p of the nodes, which we denote by S(h).
{vdNd o
S(0) =

AlB|E|L|D|H I_SolnS(h)=

Proof of solution to the recurrence;

But running times are reported in terms of n, the number of nodes...

(min)Heap: heapSort

N

N\

7N\
dodsd
[ATe e[o[+ | e

Running time?

B

Why do we need another
sorting algorithm?

Remembering CS173...

Let R be an equivalence relation on the set of students in this room, where
(s,)= R if s and t have the same favorite among {A, FB, TR, CC, PMC, }.

Notation from math:[Jr={x:xR__}

One big goal for us: Given s and t we want to determine if sRt.

A Disjoint Sets example:

Let R be an equivalence relation on the set of students in this room, where
(s,t) € Rif s and t have the same favorite among {A, FB, TR, CC, PMC, __ }.

() Cores

1. Find(4)
2. Find(4)==Find(8)

3. If ({(Find(7)==Find(2)) then Union(Find(7),Find(2))

Disjoint Sets ADT

We will implement a data structure in support of “Disjoint Sets”:
* Maintains a collection S = {s,, s4, ... S} of disjoint sets.
* Each set has a representative member.
« Supports functions: void MakeSet(const T & k);
void Union(const T & k1, const T & k2);
T & Find(const T & k);

A first data structure for Disjoint Sets:

@O @ GCso

Find:

Union:

A better data structure for Disjoint Sets: UpTrees

« if array value is -1, then we’ve found a root, o/w value is index of parent.

* X and y are in the same tree iff they are in the same set.
0 1 2 3
-1 1] -

-1

