
MP7 available, due 4/28, 11:59p. EC due 4/21, 11:59p.

Today’s announcements:

A Disjoint Sets example:
Let R be an equivalence relation on the set of students in this room, where
(s,t) ∈ R if s and t have the same favorite among A, FB, TR, CC, PMC, ____}.

0 1 4 82 5 9 3 67

1. Find(4)

2. Find(4)==Find(8)

3. If (!(Find(7)==Find(2)) then Union(Find(7),Find(2))

Disjoint Sets ADT
We will implement a data structure in support of “Disjoint Sets”:

• Maintains a collection S = {s0, s1, … sk} of disjoint sets.

• Each set has a representative member.

• Supports functions:

A first data structure for Disjoint Sets:

Find:

Union:

void MakeSet(const T & k);

void Union(const T & k1, const T & k2);

T & Find(const T & k);

3 5 60 1 4 2 7

0 1 2 3 4 5 6 7
0 0 2 3 0 3 3 2

0 1 2 3 0 1 2 3

0 1 2 3

A better data structure for Disjoint Sets: UpTrees
• if array value is -1, then we’ve found a root, o/w value is index of parent.

• x and y are in the same tree iff they are in the same set.

Let R be an equivalence relation on the set of students in
this room, where (s,t) ∈ R if s and t have the same
favorite among {AB, FN, DJ, ZH, FB}.

0 1 4 82 5 9 3 67

0 1 2 3 4 5 6 7 8 9
4 8 5 6 -1 -1 -1 -1 4 5

5 7 4 3

9 2
0 8

1

6

A better data structure for Disjoint Sets:

int DS::Find(int i) {

if (s[i] < 0) return i;

else return Find(s[i]);

}

void DS::Union(int root1, int root2) {

________________________;

}

Running time depends on ___________.

Worst case?

What’s an ideal tree?

Smart unions:

Union by height:

Union by size:

Both of these schemes for Union guarantee the height of the tree is __________.

Keeps overall height of
tree as small as possible.

Increases distance to
root for fewest nodes.

Smart unions:

int DS::Find(int i) {

if (s[i] < 0) return i;

else return Find(s[i]);

}

void DS::UnionBySize(int root1, int root2) {

int newSize = s[root1]+s[root2];

if (isBigger(root1,root2)) {

s[root2]= root1;

s[root1]= newSize;

}

else {

s[root1] = root2;

s[root2]= newSize;

}

}

Path Compression:

10

9 11

1 7

2 8

43

5 6

