Today’'s announcements:
MP7 available. Due 5/2, 11:59p. EC due 4/21, 11:59p.

How do we get from here to there?

- Need:
1. Common Vocabulary

| 2. Graph implementation
e 3. Traversal
4. Algorithms.
a o
S
] o L
..... = b A P

o
K YI{‘(
KAy
AL 7
SO LK

v

5/
2 S
SO

N
S

v
S e or
I I

v
T




Incident edges(v): | ={(x,v) in E}

Graph Vocabulary:

G = (V.E)

Degree(v): |l|

Adjacent vertices(v): A = {x: (x,v) in E}

Path(G,) - sequence of vertices
connected by edges.

Cycle(G,) - path with common begin
and end vertex.

Simple graph(G) - graph with no self-
loops and no multi-edges.



Subgraph(G)- G’ = (V', E), V'_ V,
Graph Vocabulary: E __E,and (uVv)__ E implies
u_Vandv ___ V.

G = (V.E)

Complete subgraph(G,) —

Connected subgraph(G) -

O

Connected component(G) —

(%)
Acyclic subgraph(G,) —

OmOm®

G |
Spanning tree(G,) —



Graphs: theory that will help us in analysis

Running times often reported in terms of n, the number
of vertices, but they often depend on m, the number of

How many edges”?

h At least:
G = (V.E)
g connected —
IV =n
f
] = m

not connected -
At most;

simple -

not simple -

Relationship to degree sum:

» deg(v) -



Thm: Every minimally connected graph G=(V,E) has |V|-1 edges.

Proof: Consider an arbitrary minimally connected graph
G=(V,E).

h @ Lemma: Every connected subgraph of G is minimally connected.

@ e (easy proof by contradiction)
> IH: For any j < |V|, any minimally connected graph of j vertices has
j-1 edges.
SUppOSG V| = 1: A minimally connected graph of 1 vertex has no edges, and 0 = 1-1.
Suppose |V| > 1: Choose any vertex and let d denote its degree. Remove its
incident edges, partitioning the graph into components, Co=( : ) ...
Ca=( : ), each of which is a minimally connected subgraph of G. This means
that |Ex| = by :

Now we’ll just add up edges in the original graph:



Graphs: Toward implementation...(ADT)

Functions: (merely a smattering...)
insertVertex(pair keyData)

insertEdge(vertex v1, vertex v2, pair keyData)

removeEdge(edge e);

removeVertex(vertex v);

Data:
. incidentEdges(vertex v);
Vertices
areAdjacent(vertex v1, vertex v2);
Edges

origin(edge e);
+ some structure that reflects

the connectivity of the graph destination(edge e);



Graphs: Edge List (a first implementation)

Some functions we’ll compare:

a C :
/ X \ . insertVertex(vertex v)
O, W @

removeVertex(vertex v)
areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

u a
Y b
W C
Z d




Graphs: Adjacency Matrix

Some functions we’ll compare:

a \ insertVertex(vertex v)
b d
O, W)

@ removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

u a u
\ b v
W C W
Z d Z




Graphs: Adjacency List

®
O/b\@ e

Z

Some functions we’ll compare:
insertVertex(vertex v)
removeVertex(vertex v)
areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

u a
Y b
W C
Z d




Graphs: Asymptotic Performance

* n vertices, m edges

- no parallel edges :
s S0 Adjacency List | A4
Space n+m n+m n’
incidentEdges(v) m deg(v) n
areAdjacent (v, w)| m | min(deg(v), deg(w)) ]
insertVertex(o) 1 1 n’
insertEdge(v, w, 0) | | 1
removeVertex(v) m deg(v) n’
removeEdge(e) 1 1 ]




