
MP7 available. Due 5/2, 11:59p. EC due 4/21, 11:59p.

Today’s announcements:

How do we get from here to there?
Need:

1. Common Vocabulary
2. Graph implementation
3. Traversal
4. Algorithms.

Graph Vocabulary:

Incident edges(v): I = {(x,v) in E}

Degree(v): |I|

Adjacent vertices(v): A = {x: (x,v) in E}

Path(G2) - sequence of vertices
connected by edges.

Cycle(G1) - path with common begin
and end vertex.

Simple graph(G) - graph with no self-
loops and no multi-edges.

G = (V,E)

|V| = n

|E| = m

G1 G2 G3

Graph Vocabulary:
Subgraph(G) – G’ = (V’, E’), V’__ V,
E’ ___ E, and (u,v) ___ E’ implies
u___V’ and v ___ V’.

Complete subgraph(G2) –

Connected subgraph(G) -

Connected component(G) –

Acyclic subgraph(G2) –

Spanning tree(G1) –

G = (V,E)

|V| = n

|E| = m

G1 G2 G3

Graphs: theory that will help us in analysis

How many edges?

At least:

connected –

not connected -

At most:

simple -

not simple -

Relationship to degree sum:

XU

V

W

Z

Y

a

c

b

e

d

f
g

h
G = (V,E)

|V| = n

|E| = m

Running times often reported in terms of n, the number
of vertices, but they often depend on m, the number of
edges.

Thm: Every minimally connected graph G=(V,E) has |V|-1 edges.

Proof: Consider an arbitrary minimally connected graph
G=(V,E).

Lemma: Every connected subgraph of G is minimally connected.
(easy proof by contradiction)

IH: For any j < |V|, any minimally connected graph of j vertices has
j-1 edges.

XU

V

W

Z

Y

a

c e

f

h

Suppose |V| = 1: A minimally connected graph of 1 vertex has no edges, and 0 = 1-1.

Suppose |V| > 1: Choose any vertex and let d denote its degree. Remove its
incident edges, partitioning the graph into _______ components, C0=(____,____), ...
Cd=(____, ____), each of which is a minimally connected subgraph of G. This means
that |Ek| = ________ by _____.

Now we’ll just add up edges in the original graph:

Graphs: Toward implementation…(ADT)

Data:

Vertices

Edges

+ some structure that reflects
the connectivity of the graph

X

V

W

Z

Y

b

e
d

f
g

h

Functions: (merely a smattering…)

insertVertex(pair keyData)

insertEdge(vertex v1, vertex v2, pair keyData)

removeEdge(edge e);

removeVertex(vertex v);

incidentEdges(vertex v);

areAdjacent(vertex v1, vertex v2);

origin(edge e);

destination(edge e);

Graphs: Edge List (a first implementation)

v

u

w

a c
b

z
d

a

b

c

d

u

v

w

z

Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

Graphs: Adjacency Matrix

v

u

w

a c
b

z
d

a

b

c

d

u v w z

u

v

w

z

u

v

w

z

Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

Graphs: Adjacency List

v

u

w

a c
b

z
d

a

b

c

d

u

v

w

z

Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

Graphs: Asymptotic Performance

• n vertices, m edges
• no parallel edges
• no self-loops
• Bounds are big-O

Edge
 List Adjacency List Adjacency

Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

