Today's announcements:

MP7 available. Due 5/2, 11:59p. EC due 4/21, 11:59p.

How do we get from here to there? Need:

Common Vocabulary
 Graph implementation
 Traversal
 Algorithms.

Simple graph(G) - graph with no selfloops and no multi-edges.

Graphs: theory that will help us in analysis

b

е

g

 \mathbb{W}

h

G = (V, E)

U

Running times often reported in terms of n, the number of vertices, but they often depend on m, the number of edges.

How many edges?

At least:

connected -

not connected -

At most:

simple -

not simple -

Relationship to degree sum:

Thm: Every minimally connected graph G=(V,E) has |V|-1 edges.

Proof: Consider an arbitrary minimally connected graph G=(V,E).

 Z Lemma: Every connected subgraph of G is minimally connected. (easy proof by contradiction)

IH: For any j < |V|, any minimally connected graph of j vertices has j-1 edges.

Suppose |V| = 1: A minimally connected graph of 1 vertex has no edges, and 0 = 1-1.

Suppose |V| > 1: Choose any vertex and let d denote its degree. Remove its incident edges, partitioning the graph into _____ components, $C_0=(____, ___)$, ... $C_d=(____, ___)$, each of which is a minimally connected subgraph of G. This means that $|E_k| = _____$ by ____.

Now we'll just add up edges in the original graph:

а

Graphs: Toward implementation...(ADT)

Functions: (merely a smattering...)

insertVertex(pair keyData)

insertEdge(vertex v1, vertex v2, pair keyData)

removeEdge(edge e);

removeVertex(vertex v);

Data:

Vertices

Edges

+ some structure that reflects the connectivity of the graph

incidentEdges(vertex v); areAdjacent(vertex v1, vertex v2); origin(edge e); destination(edge e);

Graphs: Edge List (a first implementation)

Some functions we'll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

Graphs: Adjacency Matrix

Some functions we'll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

u

W

Ζ

	u	V	w	Z
u				
V				
w				
z				

Graphs: Adjacency List

Some functions we'll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)

Graphs: Asymptotic Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops Bounds are big-O 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
incidentEdges(v)	m	deg(v)	n
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n ²
insertEdge(v, w, o)	1	1	1
removeVertex(v)	т	deg(v)	n ²
removeEdge(e)	1	1	1