
MP7 available. Due 5/2, 11:59p. EC due 4/21, 11:59p.

Today’s announcements:

How do we get from here to there?
Need:

1. Common Vocabulary
2. Graph implementation
3. Traversal
4. Algorithms.



Graph Vocabulary:

Incident edges(v):  I = {(x,v) in E}

Degree(v): |I|

Adjacent vertices(v): A = {x: (x,v) in E}

Path(G2) - sequence of vertices 
connected by edges.

Cycle(G1) - path with common begin 
and end vertex.

Simple graph(G) - graph with no self-
loops and no multi-edges.

G = (V,E)

|V| = n

|E| = m

G1 G2 G3



Graph Vocabulary:
Subgraph(G) – G’ = (V’, E’), V’__ V, 
E’ ___ E, and   (u,v) ___ E’ implies 
u___V’ and v ___ V’.

Complete subgraph(G2) –

Connected subgraph(G) -

Connected component(G) –

Acyclic subgraph(G2) –

Spanning tree(G1) –

G = (V,E)

|V| = n

|E| = m

G1 G2 G3



Graphs: theory that will help us in analysis

How many edges?

At least:

connected –

not connected -

At most:

simple -

not simple -

Relationship to degree sum:
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G = (V,E)

|V| = n

|E| = m

Running times often reported in terms of n, the number 
of vertices, but they often depend on m, the number of 
edges.



Thm: Every minimally connected graph G=(V,E) has |V|-1 edges.

Proof:  Consider an arbitrary minimally connected graph 
G=(V,E).

Lemma:  Every connected subgraph of G is minimally connected. 
(easy proof by contradiction)

IH: For any j < |V|, any minimally connected graph of j vertices has 
j-1 edges.
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Suppose |V| = 1: A minimally connected graph of 1 vertex has no edges, and 0 = 1-1.

Suppose |V| > 1: Choose any vertex and let d denote its degree.  Remove its 
incident edges, partitioning the graph into _______ components, C0=(____,____), ... 
Cd=(____, ____), each of which is a minimally connected subgraph of G.  This means 
that |Ek| = ________ by _____.  

Now we’ll just add up edges in the original graph:



Graphs: Toward implementation…(ADT)

Data:

Vertices

Edges

+ some structure that reflects 
the connectivity of the graph
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Functions: (merely a smattering…)

insertVertex(pair keyData)

insertEdge(vertex v1, vertex v2, pair keyData)

removeEdge(edge e);

removeVertex(vertex v);

incidentEdges(vertex v);

areAdjacent(vertex v1, vertex v2);

origin(edge e);

destination(edge e);



Graphs: Edge List (a first implementation)
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Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)



Graphs: Adjacency Matrix
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Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)



Graphs: Adjacency List
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Some functions we’ll compare:

insertVertex(vertex v)

removeVertex(vertex v)

areAdjacent(vertex v, vertex u)

incidentEdges(vertex v)



Graphs: Asymptotic Performance

• n vertices, m edges
• no parallel edges
• no self-loops
• Bounds are big-O

Edge
 List Adjacency List Adjacency 

Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1


