
MP7 available. Due 5/2, 11:59p. 

Today’s announcements:

Graphs: Traversal - DFS

http://www.cs.duke.edu/csed/jawaa2/examples/DFS.html

http://www.student.seas.gwu.edu/~idsv/idsv.html

http://www.youtube.com/watch?v=8qrZ1clEp-Y

Ariadne, Theseus, and the 
Minotaur
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DFS:   “visits” each vertex
classifies each edge as either “discovery” or “back”

Algorithm DFS(G)

Input: graph G

Output:  labeling of the edges of G 
as discovery edges and back edges

For all u in G.vertices()

setLabel(u, UNVISITED)

For all e in G.edges()

setLabel(e, UNEXPLORED)

For all v in G.vertices()

if getLabel(v) = UNVISITED

DFS(G,v)

Algorithm DFS(G,v)

Input: graph G and start vertex v

Output:  labeling of the edges of G in the 
connected component of v as discovery edges and 
back edges

setLabel(v, VISITED)

For all w in G.adjacentVertices(v)

if getLabel(w) = UNVISITED

setLabel((v,w),DISCOVERY)

DFS(G,w)

else if getLabel((v,w)) = UNEXPLORED

setLabel(e,BACK)



Graphs: DFS example
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Graphs: DFS Analysis

setting/getting labels

every vertex labeled twice

every edge is labeled twice

querying vertices

each vertex

total over algorithm

querying edges

TOTAL RUNNING TIME:



Muddy City…



Minimum Spanning Tree Algorithms:
•Input:  connected, undirected graph G with unconstrained edge weights

•Output:  a graph G’ with the following characteristics -

•G’ is a spanning subgraph of G

•G’ is connected and acyclic (a tree)

•G’ has minimal total weight among all such spanning trees -

_________________________

CB

A

E

D

F

48

7 1

2
5

2

3 9



Kruskal’s Algorithm
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Kruskal’s Algorithm (1956)
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1. Initialize graph T whose purpose is to be our output.  Let it 
consist of all n vertices and no edges.

2.  Initialize a disjoint sets structure where each vertex is 
represented by a set.

3.  RemoveMin from PQ.  If that edge connects 2 vertices from 
different sets, add the edge to T and take Union of the vertices’ two 
sets, otherwise do nothing.  Repeat until ______ edges are added to T.

a b c d

e f g h



Kruskal’s Algorithm - preanalysis
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Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority 
Queue: Heap

Sorted 
Array

To build
Each 

removeMin



Kruskal’s Algorithm - analysis
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Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority 
Queue: Total Running time:

Heap
Sorted 

Array


