
MP7 available. Due 5/2, 11:59p.

Today’s announcements:

Graphs: Traversal - DFS

http://www.cs.duke.edu/csed/jawaa2/examples/DFS.html

http://www.student.seas.gwu.edu/~idsv/idsv.html

http://www.youtube.com/watch?v=8qrZ1clEp-Y

Ariadne, Theseus, and the
Minotaur

A

B

C

D E

DFS: “visits” each vertex
classifies each edge as either “discovery” or “back”

Algorithm DFS(G)

Input: graph G

Output: labeling of the edges of G
as discovery edges and back edges

For all u in G.vertices()

setLabel(u, UNVISITED)

For all e in G.edges()

setLabel(e, UNEXPLORED)

For all v in G.vertices()

if getLabel(v) = UNVISITED

DFS(G,v)

Algorithm DFS(G,v)

Input: graph G and start vertex v

Output: labeling of the edges of G in the
connected component of v as discovery edges and
back edges

setLabel(v, VISITED)

For all w in G.adjacentVertices(v)

if getLabel(w) = UNVISITED

setLabel((v,w),DISCOVERY)

DFS(G,w)

else if getLabel((v,w)) = UNEXPLORED

setLabel(e,BACK)

Graphs: DFS example
A B C D E

B A C

C B A D E

D A C

E A C

A

B

C

D E

Graphs: DFS Analysis

setting/getting labels

every vertex labeled twice

every edge is labeled twice

querying vertices

each vertex

total over algorithm

querying edges

TOTAL RUNNING TIME:

Muddy City…

Minimum Spanning Tree Algorithms:
•Input: connected, undirected graph G with unconstrained edge weights

•Output: a graph G’ with the following characteristics -

•G’ is a spanning subgraph of G

•G’ is connected and acyclic (a tree)

•G’ has minimal total weight among all such spanning trees -

CB

A

E

D

F

48

7 1

2
5

2

3 9

Kruskal’s Algorithm

a
b

c

f

g

h

ed

5 15

5 16
10

11 12

9

2
8

12

1317

2

16

4

(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

(g,h)

(e,c)

(c,h)

(e,f)

(f,c)

(d,e)

(b,c)

(c,d)

(a,f)

(d,f)

Kruskal’s Algorithm (1956)

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

(g,h)

(e,c)

(c,h)

(e,f)

(f,c)

(d,e)

(b,c)

(c,d)

(a,f)

(d,f)

1. Initialize graph T whose purpose is to be our output. Let it
consist of all n vertices and no edges.

2. Initialize a disjoint sets structure where each vertex is
represented by a set.

3. RemoveMin from PQ. If that edge connects 2 vertices from
different sets, add the edge to T and take Union of the vertices’ two
sets, otherwise do nothing. Repeat until ______ edges are added to T.

a b c d

e f g h

Kruskal’s Algorithm - preanalysis

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority
Queue: Heap

Sorted
Array

To build
Each

removeMin

Kruskal’s Algorithm - analysis

a
b

c

f
g

h

ed

5 15
5 16

10
11 12

9

2812

1317

2
16

4

Algorithm KruskalMST(G)

disjointSets forest;
for each vertex v in V do

forest.makeSet(v);

priorityQueue Q;
Insert edges into Q, keyed by weights

graph T = (V,E) with E = ∅;

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
if forest.find(v) ≠ forest.find(u) then

Add edge e to E
forest.smartUnion

(forest.find(v),forest.find(u))

return T

Priority
Queue: Total Running time:

Heap
Sorted

Array

