Today's announcements:

MP7 available. Due 5/2, 11:59p. Kruskal's Algorithm (1956)

(a,d)

(e,h)

(f,g)

(a,b)

(b,d)

(g,e)

1. Init graph T to be our output. Let it consist of all n vertices and $n_{(d,1)}^{(a,i)}$ descent of a vertices and $n_{(d,1)}^{(a,i)}$ descent of a vertice of a

2. Init a disjoint sets structure where each vertex is represented by a set.

3. RemoveMin from PQ. If that edge connects 2 vertices from different sets, add the edge to T and take Union of the vertices' two sets, otherwise do nothing. Repeat until _____ edges are added to T.

Kruskal's Algorithm - preanalysis

Priority Queue:	Неар	Sorted Array
To build		
Each removeMin		

Algorithm *KruskalMST*(*G*)

disjointSets forest; for each vertex v in V do forest.makeSet(v);

priorityQueue Q; Insert edges into *Q*, keyed by weights

graph T = (V, E) with $E = \emptyset$;

while T has fewer than n-1 edges do
 edge e = Q.removeMin()
 Let u, v be the endpoints of e
 if forest.find(v) ≠ forest.find(u) then
 Add edge e to E
 forest.smartUnion
 (forest.find(v),forest.find(u))

return T

Kruskal's Algorithm - analysis

Algorithm *KruskalMST*(*G*)

disjointSets forest; for each vertex v in V do forest.makeSet(v);

priorityQueue Q; Insert edges into *Q*, keyed by weights

graph T = (V, E) with $E = \emptyset$;

while T has fewer than n-1 edges do
 edge e = Q.removeMin()
 Let u, v be the endpoints of e
 if forest.find(v) ≠ forest.find(u) then
 Add edge e to E
 forest.smartUnion
 (forest.find(v),forest.find(u))

return T

Priority Queue:	Total Running time:
Неар	
Sorted Array	

Prim's algorithms (1957) is based on the Partition Property:

Consider a partition of the vertices of G into subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.

Proof:

See cs374

MST - minimum total weight spanning tree

Theorem suggests an algorithm...

Example of Prim's algorithm -

Initialize structure:

- 1. For all v, d[v] = "infinity", p[v] = null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue
- 4. Initialize set of labeled vertices to \varnothing .

Example of Prim's algorithm -

Initialize structure:

- 1. For all v, d[v] = "infinity", p[v] = null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue
- 4. Initialize set of labeled vertices to \varnothing .

Repeat these steps n times:

- Find & remove minimum d[] unlabelled vertex: v
- Label vertex v

•

For all unlabelled neighbors w of v, If cost(v,w) < d[w] d[w] = cost(v,w) p[w] = v

Prim's Algorithm (undirected graph with unconstrained edge weights):

Initialize structure:		adi mtx	adi list
1. For all v. $d[v] = $ "infinitv". $p[v] = null$			
2. Initialize source: $d[s] = 0$	heap	O(n ² + m log n)	O(n log n + m log n)
3. Initialize priority (min) queue			
4. Initialize set of labeled vertices to \emptyset .			
	Unsorted arrav	O(n ²)	O(n ²)
Repeat these steps n times:			
Remove minimum d[] unlabeled vertex: v			
 Label vertex v (set a flag) 	Which is best?		
• For all unlabeled neighbors w of v	Depends on density of the graph: Sparse		
If $cost(v, w) < d[w]$			
d[w] = cost(v,w)	' Dense		
p[w] = v			