
How would you characterize the difference between these two graphs?

Today’s announcements:

Example of Prim’s algorithm -

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Find & remove minimum d[] unlabelled

vertex: v

• Label vertex v

• For all unlabelled neighbors w of v,
If cost(v,w) < d[w]

d[w] = cost(v,w)
p[w] = v

Prim’s Algorithm (undirected graph with unconstrained edge weights):

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue
4. Initialize set of labeled vertices to ∅.

Repeat these steps n times:
• Remove minimum d[] unlabeled vertex: v
• Label vertex v (set a flag)

• For all unlabeled neighbors w of v,
If cost(v,w) < d[w]

d[w] = cost(v,w)
p[w] = v

Which is best?
Depends on density of the graph:

Sparse

Dense

adj mtx adj list

heap O(n2 + m log n) O(n log n + m log n)

Unsorted
array O(n2) O(n2)

Single source shortest path

Given a start vertex (source) s, find the path of
least total cost from s to every vertex in the
graph.

Single source shortest path:

Input: directed graph G with non-negative edge weights, and a start
vertex s.
Output: A subgraph G’ consisting of the shortest (minimum total cost)
paths from s to every other vertex in the graph.

s

d

c

b
e

f

g

10

7

3
5

7

3
3

2
2

6

Dijkstra’s Algorithm (1959)

Single source shortest path (directed graph w non-negative edge weights):

Given a source vertex s, we
wish to find the shortest path
from s to every other vertex in
the graph.

s

d

c

b

e

f

g

10

7

3
5

7

3
3

2

2

6

Initialize structure:

Repeat these steps:
1. Label a new (unlabelled) vertex v,

whose shortest distance has been
found

2. Update v’s neighbors with an
improved distance

Dijkstra’s Algorithm (1959)

Single source shortest path (directed graph w non-negative edge weights):

s

d

c

b
e

f

g

10

7

3
5

7

3
3

2
2

6

Initialize structure:
1. For all v, d[v] = “infinity”, p[v] = null
2. Initialize source: d[s] = 0
3. Initialize priority (min) queue

Repeat these steps n times:
• Find minimum d[] unlabelled vertex: v

• Label vertex v

• For all unlabelled neighbors w of v,
If (____________ < d[w])

d[w] = ______________
p[w] = v

Running time?

Single source shortest path (directed graph w non-negative edge weights):

Why non-negative edge weights??

a

d

c

b

e

s

g

10

7

13
5

7

2
3

-2

2

6

Initialize structure:

Repeat these steps:
1. Label a new (unlabelled) vertex v,

whose shortest distance has been
found

2. Update v’s neighbors with an
improved distance

Dijkstra’s Algorithm (1959)

