
An intoductory tutorial on kd�trees

Andrew W� Moore

Carnegie Mellon University

awm�cs�cmu�edu

Extract from Andrew Moore�s PhD Thesis� E�cient Memory�based Learning for Robot Control

PhD� Thesis� Technical Report No� ���� Computer Laboratory� University of Cambridge� �����



Chapter �

Kd�trees for Cheap Learning

This chapter gives a speci�cation of the nearest neighbour algorithm� It also gives

both an informal and formal introduction to the kd�tree data structure� Then there

is an explicit� detailed account of how the nearest neighbour search algorithm is

implemented e�ciently� which is followed by an empirical investigation into the al�

gorithm�s performance� Finally� there is discussion of some other algorithms related

to the nearest neighbour search�

��� Nearest Neighbour Speci�cation

Given two multi	dimensional spaces Domain 
 �kd and Range 
 �kr � let an exemplar be a

member of Domain � Range and let an exemplar�set be a �nite set of exemplars� Given an

exemplar	set� E� and a target domain vector� d� then a nearest neighbour of d is any� exemplar

�d�� r�
 � E such that None�nearer�E�d�d�
� Notice that there might be more than one suit	

able exemplar� This ambiguity captures the requirement that any nearest neighbour is adequate�

None�nearer is de�ned thus�

None�nearer�E�d�d�
 � ��d��� r��
 � E j d� d� j�j d� d�� j ����


In Equation ��� the distance metric is Euclidean� though any other Lp	norm could have been used�

j d � d� j

vuuti�kdX

i��

�di � d�i
� ����


where di is the ith component of vector d�

In the following sections I describe some algorithms to realize this abstract speci�cation with

the additional informal requirement that the computation time should be relatively short�

�	�



Algorithm� Nearest Neighbour by Scanning�

Data Structures�

domain�vector A vector of kd �oating point numbers�

range�vector A vector of kr �oating point numbers�

exemplar A pair� �domain�vector� range�vector


Input� exlist� of type list of exemplar

dom� of type domain�vector

Output� nearest� of type exemplar

Preconditions� exlist is not empty

Postconditions� if nearest represents the exemplar �d�� r�
�

and exlist represents the exemplar set E�

and dom represents the vector d�

then �d�� r�
 � E and None�nearer�E�d�d�
�

Code�

�� nearest�dist �
 in�nity

�� nearest �
 unde�ned

�� for ex �
 each exemplar in exlist

��� dist �
 distance between dom and the domain of ex

��� if dist � nearest�dist then

����� nearest�dist �
 dist

����� nearest �
 ex

Table ���� Finding Nearest Neighbour by scanning a list�

��� Naive Nearest Neighbour

This operation could be achieved by representing the exemplar	set as a list of exemplars� In Ta	

ble ���� I give the trivial nearest neighbour algorithm which scans the entire list� This algorithm has

time complexity O�N
 where N is the size of E� By structuring the exemplar	set more intelligently�

it is possible to avoid making a distance computation for every member�

��� Introduction to kd�trees

A kd�tree is a data structure for storing a �nite set of points from a k	dimensional space� It was

examined in detail by J� Bentley �Bentley� ����� Friedman et al�� ������ Recently� S� Omohundro

has recommended it in a survey of possible techniques to increase the speed of neural network

learning �Omohundro� ������

A kd	tree is a binary tree� The contents of each node are depicted in Table ���� Here I provide

an informal description of the structure and meaning of the tree� and in the following subsection I

�	�



Field Name� Field Type Description

dom�elt domain�vector A point from kd	d space

range�elt range�vector A point from kr	d space

split integer The splitting dimension

left kd�tree A kd	tree representing those points

to the left of the splitting plane

right kd�tree A kd	tree representing those points

to the right of the splitting plane

Table ���� The �elds of a kd	tree node

give a formal de�nition of the invariants and semantics�

The exemplar	set E is represented by the set of nodes in the kd	tree� each node representing

one exemplar� The dom�elt �eld represents the domain	vector of the exemplar and the range�elt

�eld represents the range	vector� The dom�elt component is the index for the node� It splits the

space into two subspaces according to the splitting hyperplane of the node� All the points in the

�left� subspace are represented by the left subtree� and the points in the �right� subspace by the

right subtree� The splitting hyperplane is a plane which passes through dom�elt and which is

perpendicular to the direction speci�ed by the split �eld� Let i be the value of the split �eld� Then

a point is to the left of dom�elt if and only if its ith component is less than the ith component of

dom�elt� The complimentary de�nition holds for the right �eld� If a node has no children� then

the splitting hyperplane is not required�

Figure ��� demonstrates a kd	tree representation of the four dom�elt points ��� �
� ��� �
� ��� �


and ��� �
� The root node� with dom�elt ��� �
 splits the plane in the y	axis into two subspaces�

The point ��� �
 lies in the lower subspace� that is f�x� y
 j y � �g� and so is in the left subtree�

Figure ��� shows how the nodes partition the plane�

����� Formal Speci�cation of a kd�tree

The reader who is content with the informal description above can omit this section� I de�ne a

mapping

exset�rep � kd	tree� exemplar	set ����


which maps the tree to the exemplar	set it represents�

exset�rep�empty
 
 �

exset�rep�� d� r��� empty� empty �
 
 f�d� r
g
exset�rep�� d� r� split� treeleft� treeright �
 


exset�rep�treeleft
 � f�d� r
g � exset�rep�treeright


����


�	�



[2,5]

[6,3] [3,8]

[8,9]

Figure ���

A �d	tree of four elements�

The splitting planes are not

indicated� The ����� node

splits along the y 
 � plane

and the ����� node splits

along the x 
 � plane�

[2,5]

[3,8]

[6,3]

[8,9]

Figure ���

How the tree of Figure ���

splits up the x�y plane�

�	�



The invariant is that subtrees only ever contain dom�elts which are on the correct side of all their

ancestors� splitting planes�

Is�legal�kdtree�empty
�

Is�legal�kdtree�� d� r��� empty� empty �
�

Is�legal�kdtree�� d� r� split� treeleft� treeright �
 �
��d�� r�
 � exset�rep�treeleft
 d�split � dsplit	
��d�� r�
 � exset�rep�treeright
 d�split � dsplit	

Is�legal�kdtree�treeleft
	
Is�legal�kdtree�treeright


����


����� Constructing a kd�tree

Given an exemplar	set E� a kd	tree can be constructed by the algorithm in Table ���� The pivot	

choosing procedure of Step � inspects the set and chooses a �good� domain vector from this set

to use as the tree�s root� The discussion of how such a root is chosen is deferred to Section ����

Whichever exemplar is chosen as root will not a�ect the correctness of the kd	tree� though the

tree�s maximum depth and the shape of the hyperregions will be a�ected�

��� Nearest Neighbour Search

In this section� I describe the nearest neighbour algorithm which operates on kd	trees� I begin with

an informal description and worked example� and then give the precise algorithm�

A �rst approximation is initially found at the leaf node which contains the target point� In

Figure ��� the target point is marked X and the leaf node of the region containing the target is

coloured black� As is exempli�ed in this case� this �rst approximation is not necessarily the nearest

neighbour� but at least we know any potential nearer neighbour must lie closer� and so must lie

within the circle centred on X and passing through the leaf node� We now back up to the parent

of the current node� In Figure ��� this parent is the black node� We compute whether it is possible

for a closer solution to that so far found to exist in this parent�s other child� Here it is not possible�

because the circle does not intersect with the �shaded
 space occupied by the parent�s other child�

If no closer neighbour can exist in the other child� the algorithm can immediately move up a further

level� else it must recursively explore the other child� In this example� the next parent which is

checked will need to be explored� because the area it covers �i�e� everywhere north of the central

horizontal line
 does intersect with the best circle so far�

Table ��� describes my actual implementation of the nearest neighbour algorithm� It is called

with four parameters� the kd	tree� the target domain vector� a representation of a hyperrectangle in

Domain� and a value indicating the maximum distance from the target which is worth searching�

The search will only take place within those portions of the kd	tree which lie both in the hyper	

�	�



Algorithm� Constructing a kd	tree

Input� exset� of type exemplar�set

Output� kd� of type kdtree

Pre� None

Post� exset 
 exset�rep�kd
 	 Is�legal�kdtree�kd


Code�

�� If exset is empty then return the empty kdtree

�� Call pivot	choosing procedure� which returns two values�

ex �
 a member of exset

split �
 the splitting dimension

�� d �
 domain vector of ex

�� exset� �
 exset with ex removed

�� r �
 range vector of ex

�� exsetleft �
 f�d�� r�
 � exset� j d�split � dsplitg
�� exsetright �
 f�d�� r�
 � exset� j d�split � dsplitg
�� kdleft �
 recursively construct kd	tree from exsetleft

�� kdright �
 recursively construct kd	tree from exsetright

��� kd �
 � d� r� split�kdleft�kdright �

Proof� By induction on the length of exset and the de�nitions

of exset�rep and Is�legal�kdtree�

Table ���� Constructing a kd	tree from a set of exemplars�

Figure ���

The black dot is the dot

which owns the leaf node

containing the target �the

cross
� Any nearer neigh	

bour must lie inside this cir	

cle�

�	�



Figure ���

The black dot is the parent

of the closest found so far�

In this case the black dot�s

other child �shaded grey


need not be searched�

rectangle� and within the maximum distance to the target� The caller of the routine will generally

specify the in�nite hyperrectangle which covers the whole of Domain� and the in�nite maximum

distance�

Before discussing its execution� I will explain how the operations on the hyperrectangles can

be implemented� A hyperrectangle is represented by two arrays� one of its minimum coordinates�

the other of its maximum coordinates� To cut the hyperrectangle� so that one of its edges is moved

closer to its centre� the appropriate array component is altered� To check to see if a hyperrectangle

hr intersects with a hypersphere radius r centered at point t� we �nd the point p in hr which is

closest to t� Write hrmin
i as the minimum extreme of hr in the ith dimension and hrmax

i as the

maximum extreme� pi� the ith component of this closest point is computed thus�

pi 


����
���

hrmin
i if ti � hrmin

i

ti if hrmin
i � ti � hrmax

i

hrmin
i if ti 
 hrmax

i

����


The objects intersect only if the distance between p and t is less than or equal to r�

The search is depth �rst� and uses the heuristic of searching �rst the child node which contains

the target� Step � deals with the trivial empty tree case� and Steps � and � assign two important

local variables� Step � cuts the current hyperrectangle into the two hyperrectangles covering the

space occupied by the child nodes� Steps ��� determine which child contains the target� After

Step �� when this initial child is searched� it may be possible to prove that there cannot be any

closer point in the hyperrectangle of the further child� In particular� the point at the current node

must be out of range� The test is made in Steps � and ��� Step � restricts the maximum radius in

which any possible closer point could lie� and then the test in Step �� checks whether there is any

�	�



Algorithm� Nearest Neighbour in a kd	tree

Input� kd� of type kdtree
target� of type domain vector

hr� of type hyperrectangle
max�dist�sqd� of type �oat

Output� nearest� of type exemplar

dist�sqd� of type �oat

Pre� Is�legal�kdtree�kd


Post� Informally� the postcondition is that nearest is a nearest exemplar
to target which also lies both within the hyperrectangle hr
and within distance

p
max�dist�sqd of target�

p
dist�sqd is

the distance of this nearest point�
If there is no such point then dist�sqd contains in�nity�

Code�

�� if kd is empty then set dist�sqd to in�nity and exit�
�� s �
 split �eld of kd
�� pivot �
 dom�elt �eld of kd
�� Cut hr into two sub	hyperrectangles left�hr and right�hr�

The cut plane is through pivot and perpendicular to the s dimension�
�� target�in�left �
 targets � pivots
�� if target�in�left then
��� nearer�kd �
 left �eld of kd and nearer�hr �
 left�hr

��� further�kd �
 right �eld of kd and further�hr �
 right�hr

�� if not target�in�left then
��� nearer�kd �
 right �eld of kd and nearer�hr �
 right�hr

��� further�kd �
 left �eld of kd and further�hr �
 left�hr

�� Recursively call Nearest Neighbour with parameters
�nearer�kd�target� nearer�hr�max�dist�sqd
� storing the results
in nearest and dist�sqd

�� max�dist�sqd �
 minimum of max�dist�sqd and dist�sqd
��� A nearer point could only lie in further�kd if there were some

part of further�hr within distance
p
max�dist�sqd of target�

if this is the case then
���� if �pivot� target
� � dist�sqd then
������ nearest �
 �pivot� range�elt �eld of kd

������ dist�sqd �
 �pivot� target
�

������ max�dist�sqd �
 dist�sqd

���� Recursively call Nearest Neighbour with parameters
�further�kd�target� further�hr�max�dist�sqd
�
storing the results in temp�nearest and temp�dist�sqd

���� If temp�dist�sqd � dist�sqd then
������ nearest �
 temp�nearest and dist�sqd �
 temp�dist�sqd

Proof� Outlined in text

Table ���� The Nearest Neighbour Algorithm

�	�



space in the hyperrectangle of the further child which lies within this radius� If it is not possible

then no further search is necessary� If it is possible� then Step ���� checks if the point associated

with the current node of the tree is closer than the closest yet� Then� in Step ����� the further

child is recursively searched� The maximum distance worth examining in this further search is the

distance to the closest point yet discovered�

The proof that this will �nd the nearest neighbour within the constraints is by induction on the

size of the kd	tree� If the cuto� were not made in Step ��� then the proof would be straightforward�

the point returned is the closest out of �i
 the closest point in the nearer child� �ii
 the point at

the current node and �iii
 the closest point in the further child� If the cuto� were made in Step ���

then the point returned is the closest point in the nearest child� and we can show that neither the

current point� nor any point in the further child can possibly be closer�

Many local optimizations are possible which while not altering the asymptotic performance of

the algorithm will multiply the speed by a constant factor� In particular� it is in practice possible

to hold almost all of the search state globally� instead of passing it as recursive parameters�

��� Theoretical Behaviour

Given a kd	tree with N nodes� how many nodes need to be inspected in order to �nd the proven

nearest neighbour using the algorithm in Section ����� It is clear at once that on average� at least

O�logN
 inspections are necessary� because any nearest neighbour search requires traversal to at

least one leaf of the tree� It is also clear that no more than N nodes are searched� the algorithm

visits each node at most once�

Figure ��� graphically shows why we might expect considerably fewer than N nodes to be

visited� the shaded areas correspond to areas of the kd	tree which were cut o��

The important values are �i
 the worst case number of inspections and �ii
 the expected number

of inspections� It is actually easy to construct worst case distributions of the points which will force

nearly all the nodes to be inspected� In Figure ���� the tree is two	dimensional� and the points are

scattered along the circumference of a circle� If we request the nearest neighbour with the target

close to the centre of the circle� it will therefore be necessary for each rectangle� and hence each

leaf� to be inspected �this is in order to ensure that there is no point lying inside the circle in any

rectangle
�

Calculation of the expected number of inspections is di�cult� because the analysis depends

critically on the expected distribution of the points in the kd	tree� and the expected distribution

of the target points presented to the nearest neighbour algorithm�

The analysis is performed in �Friedman et al�� ������ This paper considers the expected number

of hyperrectangles corresponding to leaf nodes which will provably need to be searched� Such

hyperrectangles intersect the volume enclosed by a hypersphere centered on the query point whose

surface passes through the nearest neighbour� For example� in Figure ��� the hypersphere �in this

�	�



Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��



case a circle
 is shown� and the number of intersecting hyperrectangles is two�

The paper shows that the expected number of intersecting hyperrectangles is independent of

N � the number of exemplars� The asymptotic search time is thus logarithmic because the time to

descend from the root of the tree to the leaves is logarithmic �in a balanced tree
� and then an

expected constant amount of backtracking is required�

However� this reasoning was based on the assumption that the hyperrectangles in the tree

tend to be hypercubic in shape� Empirical evidence in my investigations has shown that this

is not generally the case for their tree building strategy� This is discussed and demonstrated in

Section ����

A second danger is that the cost� while independent of N � is exponentially dependent on k� the

dimensionality of the domain vectors��

Thus theoretical analysis provides some insight into the cost� but here� empirical investigation

will be used to examine the expense of nearest neighbour in practice�

��� Empirical Behaviour

In this section I investigate the empirical behaviour of the nearest neighbour searching algorithm�

We expect that the number of nodes inspected in the tree varies according to the following properties

of the tree�

� N � the size of the tree�

� kdom � the dimensionality of the domain vectors in the tree� This value is the k in kd	tree�

� ddistrib � the distribution of the domain vectors� This can be quanti�ed as the �true� dimen	

sionality of the vectors� For example� if the vectors had three components� but all lay on the

surface of a sphere� then the underlying dimensionality would be �� In general� discovery of

the underlying dimensionality of a given sample of points is extremely di�cult� but for these

tests it is a straightforward matter to generate such points� To make a kd	tree with underly	

ing dimensionality ddistrib� I use randomly generated kdom	dimensional domain vectors which

lie on a ddistrib	dimensional hyperelliptical surface� The random vector generation algorithm

is as follows� Generate ddistrib random angles �i � ��� ��
 where � � i � ddistrib� Then let

the jth component of the vector be
Qi�d��

i�� sin��i � �ij
� The phase angles �ij are de�ned as

�ij 

�
�
� if the jth bit of the binary representation of i is � and is zero otherwise�

� dtarget � the probability distribution from which the search target vector will be selected� I

shall assume that this distribution is the same as that which determines the domain vectors�

This is indeed what will happen when the kd	tree is used for learning control�

�This was pointed out to the author by N� Maclaren�

�	��



0 2000 4000 6000 8000 1000
0

2

4

6

8

10

12

Figure ���

Number of inspections re	

quired during a nearest

neighbour search against

the size of the kd	tree� In

this experiment the tree

was four	dimensional and

the underlying distribution

of the points was three	

dimensional�

In the following sections I investigate how performance depends on each of these properties�

����� Performance against Tree Size

Figures ��� and ��� graph the number of nodes inspected against the number of nodes in the entire

kd	tree� Each value was derived by generating a random kd	tree� and then requesting ��� random

nearest neighbour searches on the kd	tree� The average number of inspected nodes was recorded�

A node was counted as being inspected if the distance between it and the target was computed�

Figure ��� was obtained from a �d	tree with an distribution distribution ddistrib 
 �� Figure ���

used an �d	tree with an underlying distribution ddistrib 
 ��

It is immediately clear that after a certain point� the expense of a nearest neighbour search has

no detectable increase with the size of the tree� This agrees with the proposed model of search

cost�logarithmic with a large additive constant term�

����� Performance against the �k	 in kd�tree

Figure ��� graphs the number of nodes inspected against kdom� the number of components in the

kd	tree�s domain vectors for a ������ node tree� The underlying dimensionality was also kdom�

The number of inspections per search rises very quickly� possibly exponentially� with kdom� This

behaviour� the massive increase in cost with dimension� is familiar in computational geometry�

�	��



0 2000 4000 6000 8000 1000
0

10

20

30

40

50

60

70

80

Figure ���

Number of inspections

against kd	tree size for an

eight	dimensional tree with

an eight	dimensional un	

derlying distribution�

1 3 5 7 9 11 13 15
0

100

200

300

400

500

600

Figure ���

Number of inspec	

tions graphed against tree

dimension� In these experi	

ments the points had an un	

derlying distribution with

the same dimensionality as

the tree�

�	��



1 3 5 7 9 11 13
0

100

200

300

400

500

Figure ����

Number of inspections

graphed against underly	

ing dimensionality for a

fourteen	dimensional tree�

����� Performance against the Distribution Dimensionality

This experiment con�rms that it is ddistrib� the distribution dimension from which the points were

selected� rather than kdom which critically a�ects the search performance� The trials for Figure ����

used a ������ node kd	tree with domain dimension of ��� for various values of ddistrib� The im	

portant observation is that for ��d	trees� the performance does improve greatly if the underlying

distribution	dimension is relatively low� Conversely� Figure ���� shows that for a �xed ��	d
 un	

derlying dimensionality� the search expense does not seem to increase any worse than linearly with

kdom�

����
 When the Target is not Chosen from the kd�tree�s Distribution

In this experiment the points were distributed on a three dimensional elliptical surface in ten	

dimensional space� The target vector was� however� chosen at random from a ten	dimensional

distribution� The kd	tree contained ������ points� The average number of inspections over ��

searches was found to be ������ This compares with another experiment in which both points and

target were distributed in ten dimensions and the average number of inspections was only ���� The

reason for the appalling performance was exempli�ed in Figure ���� if the target is very far from

its nearest neighbour then very many leaf nodes must be checked�

����� Conclusion

The speed of the search �measured as the number of distance computations required
 seems to vary

� � �

�	��



4 6 8 10 12 14
0

20

40

60

80

100

Figure ����

Number of in	

spections graphed against

tree dimension� given a con	

stant four dimensional un	

derlying distribution�

� � � �only marginally with tree size� If the tree is su�ciently large with respect to the number

of dimensions� it is essentially constant�

� � � �very quickly with the dimensionality of the distribution of the datapoints� ddistrib�

� � � � linearly with the number of components in the kd	tree�s domain �kdom
� given a �xed

distribution dimension �ddistrib
�

There is also evidence to suggest that unless the target vector is drawn from the same distri	

bution as the kd	tree points� performance can be greatly worsened�

These results support the belief that real time searching for nearest neighbours is practical in

a robotic system where we can expect the underlying dimensionality of the data points to be low�

roughly less than ��� This need not mean that the vectors in the input space should have less

than ten components� For data points obtained from robotic systems it will not be easy to decide

what the underlying dimensionality is� However Chapter �� will show that the data does tend to

lie within a number of low dimensional subspaces�

��	 Further kd�tree Operations

In this section I discuss some other operations on kd	trees which are required for use in the SAB

learning system� These include incrementally adding a point to a kd	tree� range searching� and

selecting a pivot point�

�	��



��
�� Range Searching a kd�tree

range�search � exemplar	set �Domain �� � exemplar	set

The abstract range search operation on an exemplar	set �nds all exemplars whose domain

vectors are within a given distance of a target point�

range�search�E�d� r
 
 f�d�� r�
 � E j �d� d�
� � r�g

This is implemented by a modi�ed nearest neighbour search� The modi�cations are that �i
 the

initial distance is not reduced as closer points are discovered and �ii
 all discovered points within the

distance are returned� not just the nearest� The complexity of this operation is shown� in �Preparata

and Shamos� ������ to still be logarithmic in N �the size of E
 for a �xed range size�

��
�� Choosing a Pivot from an Exemplar Set

The tree building algorithm of Section ��� requires that a pivot and a splitting plane be selected

from which to build the root of a kd	tree� It is desirable for the tree to be reasonably balanced�

and also for the shapes of the hyperregions corresponding to leaf nodes to be fairly equally pro	

portioned� The �rst criterion is important because a badly unbalanced tree would perhaps have

O�N
 accessing behaviour instead of O�logN
� The second criterion is in order to maximize cuto�

opportunities for the nearest neighbour search� This is di�cult to formalize� but can be motivated

by an illustration� In Figure ���� is a perfectly balanced kd	tree in which the leaf regions are

very non	square� Figure ���� illustrates a kd	tree representing the same set of points� but which

promotes squareness at the expense of some balance�

One pivoting strategy which would lead to a perfectly balanced tree� and which is suggested

in �Omohundro� ������ is to pick the splitting dimension as that with maximum variance� and let

the pivot be the point with the median split component� This will� it is hoped� tend to promote

square regions because having split in one dimension� the next level in the tree is unlikely to �nd

that the same dimension has maximum spread� and so will choose a di�erent dimension� For

uniform distributions this tends to perform reasonably well� but for badly skewed distributions the

hyperregions tend to take long thin shapes� This is exempli�ed in Figure ���� which has been

balanced using this standard median pivot choice�

To avoid this bad case� I choose a pivot which splits the exemplar set in the middle of the range

of the most spread dimension� As can be seen in Figure ����� this tends to favour squarer regions

at the expense of a slight imbalance in the kd	tree� This means that large empty areas of space are

�lled with only a few hyperrectangles which are themselves large� Thus� the number of leaf nodes

which need to be inspected in case they contain a nearer neighbour is smaller than for the original

case� which had many small thin hyperrectangles�

�	��



Figure ����

A �d tree balanced using

the �median of the most

spread dimension� pivoting

strategy�

Figure ����

A �d tree balanced using

the �closest to the centre of

the widest dimension� piv	

oting strategy�

�	��



My pivot choice algorithm is to �rstly choose the splitting dimension as the longest dimension

of the current hyperrectangle� and then choose the pivot as the point closest to the middle of the

hyperrectangle along this dimension� Occasionally� this pivot may even be an extreme point along

its dimension� leading to an entirely unbalanced node� This is worth it� because it creates a large

empty leaf node� It is possible but extremely unlikely that the points could be distributed in such

a way as to cause the tree to have one empty child at every level� This would be unacceptable� and

so above a certain depth threshold� the pivots are chosen using the standard median technique�

Selecting the median as the split and selecting the closest to the centre of the range are both

O�N
 operations� and so either way a tree rebalance is O�N logN
�

��
�� Incrementally Adding a Point to a kd�tree

Firstly� the leaf node which contains the new point is computed� The hyperrectangle corresponding

to this leaf is also obtained� See Section ��� for hyperrectangle implementation� When the leaf

node is found it may either be �i
 empty� in which case it is simply replaced by a new singleton

node� or �ii
 it contains a singleton node� In case �ii
 the singleton node must be given a child� and

so its previously irrelevant split �eld must be de�ned� The split �eld should be chosen to preserve

the squareness of the new subhyperrectangles� A simple heuristic is used� The split dimension is

chosen as the dimension in which the hyperrectangle is longest� This heuristic is motivated by the

same requirement as for tree balancing�that the regions should be as square as possible� even if

this means some loss of balance�

This splitting choice is just a heuristic� and there is no guarantee that a series of points added

in this way will preserve the balance of the kd	tree� nor that the hyperrectangles will be well shaped

for nearest neighbour search� Thus� on occasion �such as when the depth exceeds a small multiple

of the best possible depth
 the tree is rebuilt� Incremental addition costs O�logN
�

��
�
 Q Nearest Neighbours

This uses a modi�ed version of the nearest neighbour search� Instead of only searching within a

sphere whose radius is the closest distance yet found� the search is within a sphere whose radius is

the Qth closest yet found� Until Q points have been found� this distance is in�nity�

��
�� Deleting a Point from a kd�tree

If the point is at a leaf� this is straightforward� Otherwise� it is di�cult� because the structure of

both trees below this node are pivoted around the point we wish to remove� One solution would

be to rebuild the tree below the deleted point� but on occasion this would be very expensive� My

solution is to mark the point as deleted with an extra �eld in the kd	tree node� and to ignore

deletion nodes in nearest neighbour and similar searches� When the tree is next rebuilt� all deletion

nodes are removed�

�	��



Bibliography

�Bentley� ����� J� L� Bentley� Multidimensional Divide and Conquer� Communications of the ACM�

����
��������� �����

�Friedman et al�� ����� J� H� Friedman� J� L� Bentley� and R� A� Finkel� An Algorithm for Finding

Best Matches in Logarithmic Expected Time� ACM Trans� on Mathematical Software� ���
�����

���� September �����

�Omohundro� ����� S� M� Omohundro� E�cient Algorithms with Neural Network Behaviour� Jour�

nal of Complex Systems� ���
��������� �����

�Preparata and Shamos� ����� F� P� Preparata and M� Shamos� Computational Geometry�

Springer	Verlag� �����

Bib	�


